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Abstract: Breast cancer is the most frequent malignancy and the leading cause of cancer morbidity and 

mortality in women worldwide. Radiation therapy (RT) is a widely used approach for its treatment. About 50% 

of patients with malignant breast tumors receive radiation therapy and most of them appear to tolerate it, but 

some experience severe side effects induced by this therapy. This variability of response may be caused by 

several factors, like age, inflammatory responses, body weight and variation in genes involved in the response to 

radiation-induced DNA damage. To limit radiotherapy side effects in breast cancer patients it is therefore 

important to have a good knowledge of these associated factors. This review discussed about the radiotherapy-

related side effects in breast cancer patients and the factors affecting them. 
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1. Background 

Breast cancer is the most commonly occurring cancer incidence among women and a leading factor of cancer 

death globally. In 2012, 1.67 million cases of breast cancer were diagnosed worldwide and were ranked as the 

fifth major reason of cancer death (522,000 deaths) (Youlden et al., 2012; Knaul et al., 2009). 

Although the frequency of breast cancer has increased by 0.2% per year between 1997 and 2000, improvements 

in diagnosis and treatment have resulted in significant survival rates of breast cancer patients (Youlden et al., 

2014). Several local therapies for breast cancer had considerably diverse effects on the length of survival and 

quality of life in breast cancer patients. It has long been received that RT can delay or prevent local or regional 

recurrence in women with early breast cancer (Roychoudhuri et al., 2004). 

Radiotherapy is an effective treatment for breast cancer. About 50% of malignant breast tumor patients receive 

radiotherapy and most of them appear to tolerate it, but some experience critical side effects induced by this 

therapy (Borrego et al., 2015) (Hershman et al., 2006). The major side effects of radiation therapy are edema 

and thickness in the breast, fatigue and sunburn-like alteration in the treated area. These exchanges to the breast 

tissue and skin commonly go away in 6 to 12 months, and in some cases, the size of the breast becomes smaller 

and firmer after radiation therapy (Bovelli et al., 2010). Sebaceous glands and hair follicles are more sensitive to 

relatively low concentrations of radiation and result in the acute side effects of hair loss and skin dryness 

(Mathes and Alexander, 1996). 

Different factors may be responsible for generating this variability, for example, age, inflammatory responses, 

body weight and variation in genes involved in the response to radiation-induced DNA damage (Lin et al., 

2012). Besides, increased exposure to radiation sources and other treatment-related effects may also induce 

radiation associated with adverse events (Doody et al., 2000). This review is intended to summarize studies 

concerning radiotherapy-related side effects in breast cancer patients and the factors affecting them. 
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2. Radiotherapy  

Radiotherapy (RT) is a widely used treatment in cancer. The aim of exposing the tumor to radiation is to shrink 

the tumor mass or to eliminate the tumor cells that may have escaped surgery. The radiation dose is calculated in 

gray (Gy) units, which is the amount of radiation absorbed in 1 kg tissue (Dunne et al., 1999). Radiotherapy can 

be delivered as external beam radiation or as internal radiation. Most of the patients usually receive external 

radiotherapy and this review will mainly focus on that. 

 

2.1. Mechanism of radiotherapy 

The major goal of RT is to deprive cancer cells of their multiplication potentially and eventually destroy the 

cancer cells, while minimizing exposure to normal healthy cells in the body (Lliakis, 1991). RT uses ionizing 

radiation for more than a century to treat cancer which is mainly based on the rationality that the rapidly 

proliferating cancer cells are more sensitive to radiation therapy than the normal healthy cells (Schaue and 

McBride, 2015).  

The biological effects of RT can be resulted by the direct or indirect function of radiation on the DNA 

molecules. In the direct action, ionizing radiation hits the targeted DNA molecule directly, and produce DNA 

breaks, specifically, Double Strand Breaks (DSBs) (Mladenov et al., 2013). DSBs are difficult to repair and can 

lead to dramatic chromosomal abnormalities and genetic deletions. Therefore, DSBs increases the probability 

that cells will undergo cell death (Bassing and Alt, 2004). Previous studies indicated that radiation therapy like 

the most anticancer treatments achieve its therapeutic effect through inducing DNA damage and therefore cell 

death (Baskar et al., 2012). Several studies also found that the DNA of cancer cells repair more slowly and also 

develop more DNA breaks than the normal cells (Halazonetis et al., 2008).  

Ionizing radiation can also induce indirect effects to damage DNA by generating reactive oxygen species (ROS) 

from water molecules of the cell (Bandyopadhyay et al., 1999). ROS are free radicals and mainly categorized by 

an unpaired electron in the structure. Therefore, they are highly reactive and can react with DNA molecules to 

result in molecular structural damage (Yang et al., 2013). ROS oxidize proteins and lipids, and induce damages 

to DNA, for example, generation of single-strand breaks (SSB) and apurinic/ apyrimidinic sites (abasic sites). 

All these changes jointly induce cell death and mitotic failure (Aparicio et al., 2014) (Redon et al., 2010).  

For ionizing radiations including gamma-rays, LET X-rays, 60% of cellular damage is caused by the indirect 

effects (Hill, 2004). Both direct and indirect damage to DNA in the form of DNA breakage or replication stress 

collectively result in a complex DNA damage response (DDR). DDRs contain events that coordinate DNA 

repair, control of DNA replication, chromatin remodeling and apoptosis (Hershman et al., 2006). The ultimate 

result of the direct and indirect effects of RT is the biological and physiological changes that may visible in 

seconds or decades later.  
 

 
 

3. Early side effects of radiotherapy 

The early (acute) radiation reaction is a functional and morphological disorder that occurs in cells and 

intercellular spaces of tissues during and/or immediately after radiotherapy (Yagoda et al., 2009; Donnelly et 

al., 2010) (Figure 1). Acute radiation toxicity is most remarkable in tissues that renew fast, and this condition is 

related to the reduction of functional cells, which are removed as a part of normal tissue turnover and not 

replaced by damaged stem cells.  

Early skin associated side effects due to RT might be considered as a sign of sensitivity toward clinical 

radiation. In a study with 108 patients who were treated with RT after breast surgery, the most frequent early 

complications identified were erythema (91.7%), moist desquamation (35.2%) and dry desquamation (29.6%). 

The acute side effects such as erythema and desquamation resolve rapidly without treatment (Beral et al., 2004). 

Apart from these, fatigue, lymphoedema and changes in breast color and shape are some common early 

symptoms after radiation therapy. RT induced early fatigue is common in up to 80% of breast cancer patients 

(Mohan et al., 2019). This early fatigue is accompanied by loss of appetite, nausea, vomiting, and of acute 

Box 1 | Normal Tissue Tolerance  

The degree of structural damage to a tissue usually depends on the cell’s radio-sensitivity. The amount of 

ionizing radiation required to destroy the functional capability of a matured differentiated cell is much higher 

than that for dividing cells. The response of a tissue or organ to RT mainly depends on the cell’s inherited 

sensitivity and also on the organization of cells in a tissue. In breast tissues, severe or grade 3 tissue damage 

of up to 5% is acceptable 9 (Dunne, 1999) which also accepts relatively high treatment doses. Therefore, an 

increased amount of toxicity of radiotherapy in case of breast cancer is acceptable to enhance the probability 

of cure. 
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radiation illness (Hickok et al., 2005). Lymphoedema is the swelling of the hand, arm or breast/chest area 

caused by a build-up of lymph fluid in the exterior tissues of the body. It can occur due to radiation-induced 

damage to the lymph nodes under the arm (axilla) and the surrounding area. RT after breast-conserving surgery 

may cause changes to the breast tissue on the treated side. So the breast may look smaller and different than 

before or may feel firmer (Donnelly et al., 2010). 

 

4. Late side effects  

Late side effects progress with time, become more severe, and generally cannot stop or reverse (Newman et al., 

1998). The length of the latency period as hard to predict also creates a major complication for the management 

of patients. Moreover, the appearance of severe late radiation reactions is associated with a risk of serious 

complications and could permanently reduce the patient’s quality of life (Bentzen, 2006) (Figure 1). 

 

4.1. Tissue damage  

Late radiation reactions, such as fibrosis, necrosis and slowly healing wounds, initiate to appear a few months 

after exposure and mainly reflect damage to proliferating cell fractions that are crucial for the regeneration of 

injured tissues (Johansson et al., 2000). Cells that are the progeny of exposed cells may divide and express 

delayed gene mutations and will bear chromosomal aberrations. This phenomenon is called radiation-induced 

genomic instability. It can be exposed through delayed lethal mutations (Powell et al., 2002) that may lead to 

prolonged tissue perturbation within the radiation field (Brown, 1983). According to previous in vitro analysis, 

radiation-induced genomic instability is likely to be the basis of the phenomenon of delayed lethality (delayed 

reproductive death, DRD) of cells (Mazurik and Mikhailov, 2004). Ionizing radiation-induced genomic 

instability transmitted via several generations after radiation therapy through the progeny of surviving cells 

(Little, 1998). Earlier studies reported that induction of delayed reproductive death or lethal mutation in many 

mammalian cell systems up to six generations after exposure to ionizing radiation (Suzuki et al., 2003). 

Previous in vivo analysis reported that radiation-induced genomic instability in hemopoietic stem cells in mouse 

and man occurred through ionizing radiation which could potentially contribute to leukemogenesis (Finnon et 

al., 2012). 

 

4.2. Inflammation  

Inflammation is considered as a normal biological response that is initiated after cell injury due to infection or 

cell damage. Growing evidence has shown that RT can modulate the immune system through the upregulation 

of inflammatory mediators (Di-Maggio et al., 2015). Particularly, the ionizing radiation-related activation of 

cytokine cascades is vital (Schaue et al., 2012). This process is called damage-induced inflammation (Candeies 

and Testard, 2015). Cytokine-mediated multicellular interactions initiate the fibrogenic process and vascular 

injury (Weintraub et al., 2010) which is a long-term effect of radiotherapy. Moreover, in addition to its 

cytotoxic activity, ionizing radiation can also trigger pro-inflammatory mechanisms in tumor and normal cells 

that receive sub-lethal doses, through the activation of NF-ĸB transcription factor. This links with 

carcinogenesis, inflammation and radiotherapy resistance (Schaue et al., 2012).  

Recent experiments suggest that after radiation exposure removal of apoptotic cells enhances phagocytic cell 

activity and persistent macrophage activation and neutrophil infiltration. These phenomena continue even after 

the clearance of apoptotic bodies and may be significant determinants of the long term consequences of 

radiation exposure (Yu, 2012) (Chen et al., 2002).  

 

4.3.  Risk of second cancer  

There are many pieces of evidence for the association between radiation exposure and carcinogenesis, especially 

from the epidemiological study of the survivors of atomic bomb irradiation (Preston et al., 2003; Land et al., 

2003). It has been indicated that irradiation of surrounding tissues during breast RT can induce the chance of 

second cancers within these tissues (Harvey and Brinton, 1985; Neugut et al., 1999). From different studies 

radiation therapy for breast cancer is associated with the risk of developing leukemia, sarcoma, lung cancer, and 

esophageal cancer (Ahsan and Neugut, 1998). Generally, the latency period between exposure to radiation and 

the appearance of a second cancer is 10 or more years. Boice et al. (1987) have suggested that cancers resulting 

from radiation would develop after 10 years for solid tumors and within 5 years for leukemia (Zablotska et al., 

2005). 

Roychoudhuri et al. (2004) also found similar findings in their study. According to their observation, the risk of 

developing lung cancer was shown to be significantly increased in the RT cohort compared with the non-RT 

cohort at both 10–14 and 15 or more years after diagnosis of breast cancer. The remarkable risk of developing 
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myeloid leukemia was also monitored at 1 – 5 years. The risk of esophageal cancers has found significantly 

elevated at 15 or more years after diagnosis and RT (Roychoudhuri et al., 2004).  

 

4.4.  Cardiovascular disorders  

Prospective studies report that after RT 50%-63% of women have experienced cardiac perfusion defects. 

Radiologic evidence of irreversible lung fibrosis and associated pulmonary disorders was also reported in 6 to 

24 months after RT (Marks et al., 2000; Marks et al., 2005). It is here important to mention that an unhealthy 

lifestyle and presence of risk factors may also contribute to an elevated risk of cardiovascular disorders (CVD) 

in irradiated breast cancer patients. A report by Hooning et al. (2007) has described that 32%, 26%, 10%, and 

9% of women treated with radiotherapy were smokers, had hypertension, hypercholesterolemia, and diabetes 

mellitus, respectively (Hooning et al., 2007).  

Studies have shown that RT may enhance the risk of cardiovascular disease many years after initial breast 

cancer treatment (Batar et al., 2016). By observing a meta-analysis of eight randomized trials that mainly 

included approximately 8000 women revealed a 62% enlarged threat of cardiac death rates in women who 

received RT. These high rates of CVD deaths occur mainly due to high-volume irradiation to the heart that was 

commonly utilized in earlier RT protocols (Garcia et al., 2016).  

Radiation-induced CVD might occur due to a mixture of both microvascular and macrovascular effects. During 

the microvascular level, radiation therapy leads to a decrease in capillary density which mainly declines the 

degree of potential collateral flow and these changes are largely subclinical. This radiation-induced altered 

capillary density has resulted in both rats (Zagar et al., 2016) and mice after larger (≥8Gy) local heart doses. 

This damage to the microvascular network appears to be progressive, depending on the time and dose, 

suggesting a greater role in the underlying cause of ischemic injury (Wang et al., 2007). 

On a macrovascular level, RT accelerates atherosclerosis of larger blood vessels and this result can take years, 

or even decades to become clinically significant (Lipshultz et al., 2013). During the 1950s and 1960s, it was 

investigated that cardiac damage has resulted in radiation doses >40 Gy, whereas lower concentrations were 

considered to be safe (Guo et al., 2011). Newer RT protocols with lower radiation doses and highly focused 

radiation beams allow tumors to be targeted more preciously and shield the heart and other healthy tissue from 

the direct effect of radiation (Adams et al., 2003). 

 

 
 

Figure 1. Acute and chronic side effects of radiation therapy on breast cancer patients. 
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5. Factors affecting side effects  

The severity of damage to normal tissue after therapeutic RT is predominantly influenced by factors related to 

radiation exposure, which however are not sufficient to explain fully due to patient-to-patient variability 

(Turesson et al., 1996; Rosen et al., 1999). To date more than 60 publications have been published where 

researchers tried to identify common risk factors for RT side effects. There is significant evidence that both 

patient- and treatment-associated factors, as well as essential factors of individual radio sensitivity could 

manipulate the variability of side effects observed (Brock and Tucker, 2000) (Figure 2). 

 

5.1. Genetic makeup  

Diverse single nucleotide polymorphisms (SNPs) have been proposed to be correlated with acute or late 

radiation sensitivity. Genome-wide analyses showed that ionizing radiation-related SNPs are not localized in 

random genes but genes involved in selected processes, such as DNA damage repair, control of apoptosis, cell 

cycling and inflammation (Brock and Tucker, 2000; Alsner et al., 2008; Popanda et al., 2009; Rosenstein, 2011; 

West and Barnett, 2011). 

The BRCA1 and BRCA2 genes were first identified and sequenced in 1994 and 1995, respectively, after analysis 

of high risk for breast cancer (Anglian Breast Cancer Study Group, 2000). These genes act as classic tumor 

suppressor genes in that only one defective copy in the germline results in cancer susceptibility but both copies 

are lacking in malignant cells. These genes encode large proteins, with the BRCA1 protein-containing of 1863 

amino acids and the BRCA2 protein consisting of 3418 amino acids. The exact functions of these proteins are 

unclear, but they seem to be intimately involved in DNA repair, cell cycle control, recombination and the 

maintenance of genomic stability (Antoniou et al., 2003). According to previous studies, high complication rates 

occurred in women with BRCA1/2-associated breast cancers treated with RT (Pierce and Haffty, 2011; Smith 

and Isaacs, 2007). A retrospective cohort study from Pierce et al. (2011) reported that radiation-associated 

complications in 71 North American women with a BRCA1/2 mutation with initiative stage breast cancer treated 

with RT. With a median follow-up of 6.75 years for BRCA1/2 carriers and 7.75 years for controls, toxicities 

were comparable between these groups. The rate of breast pain was enhanced in BRCA1/2 carriers. However, 

other measures of major acute toxicity (breast erythema, moist desquamation, and fatigue) were not significantly 

different. Late effects (rib fractures, lung fibrosis, soft-tissue/ bone necrosis, and cardiac fibrosis) were also not 

significantly different between carriers and controls (Pierce and Haffty, 2011).  

CDKN1A (cyclin-dependent kinase inhibitor-1A) encodes p21 protein and highly active in cell cycle regulation 

and arrest following DNA damage and plays a crucial role in breast cancer development (Motwani and Strom, 

2006). A recent study of Price et al. (2015) suggested that CDKN1A abnormal expression has been reported to 

be associated with the acute sensitivity to radiation (Price et al., 2015). Alsbeih et al. (2003) also have shown 

that individual response in CDKN1A is related to inherent radio-sensitivity (Alsbeih et al., 2003). In another 

study, researchers have reported an interaction between DNA damage response-related CDKN1A gene 

expression and the risk of radiotherapy-induced acute side effects (Borrego et al., 2015). Finnon et al. (2012) 

showed that reduced CDKN1A mRNA expression was associated with enhanced normal tissue radiation toxicity 

by comparing mild and severe acute side effects after 2 Gy irradiation of lymphocyte cultures of breast cancer 

patients (Finnon et al., 2012).  

Earlier studies also resulted that PARP1 and XRCC1 gene expression rates were remarkably higher in control 

than experimental breast cancer patients. Later studies indicated that XRCC1 protein expression levels were 

significantly enhanced in control vs. experimental cases and higher expression of PARP1 is correlated with 

large tumor size (Batar et al., 2016). Recent studies showed that abnormal XRCC1 expression levels might be 

associated with the risk of radiation-induced acute side effects in breast cancer patients (Sasco et al., 2003). 

Rojo et al. (2012) also suggested that the over-expression of PARP1 protein was highly associated with larger 

tumor grade and estrogen- negative tumors formation (Rojo et al., 2012). 

Cytokines such as transforming growth factor-beta (TGFB1), tumor necrosis factor-alpha (TNF), interferons and 

interleukins are also involved in the development of radiation induced-toxicity. For example, IL17 receptor 

knockout mice have enhanced normal tissue radiation toxicity following irradiation (Baum et al., 2005). 

Recently, a mouse model has reported substantial evidence for the role of TGFB1 in the pathogenesis of breast 

cancer following RT (Bentzen, 2006). 

The ataxia-telangiectasia mutated (ATM) gene encodes a protein kinase which plays a major function in the 

activation of cellular responses to DNA double-strand breaks by DNA repair or apoptosis (Prokopcova et al., 

2007). Earlier studies reported that the ATM gene might be responsible for up to 8% of all breast cancer cases 

and the loss of heterozygosity often arises in the chromosomal section 11q22–23 in breast tumors (Meyn, 1999). 
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Reports also showed that patients having a truncating mutation in both copies of the ATM gene may develop 

tissue toxicity if treated with RT (Mayrou et al., 2008).  

The ataxia-telangiectasia mutated (ATM) gene encodes a protein kinase which plays a major function in the 

activation of cellular responses to DNA double-strand breaks by DNA repair or apoptosis (McKinnon, 2004). 

Earlier studies reported that assessed the ATM gene might be responsible for up to 8% of all breast cancer cases 

and the loss of heterozygosity often arises in the chromosomal section 11q22–23 in breast tumors (Apostolou 

and Fostira, 2013). Reports also showed that patients having a truncating mutation in both copies of the ATM 

gene may develop tissue toxicity if treated with RT (Andreassen et al., 2016).  

 

5.2. Body weight  

Contributes to the process of wound healing, but also can lead to angiogenesis. This angiogenesis may lead to 

the growth of previously dormant metastatic cells (Baum et al., 2005). Normally, RT deteriorates the ability of 

cancer cells to create angiogenesis and, therefore, deteriorates the ability to metastasis. Starting RT too early 

after surgery may lead to the repair of this kind of radiation-induced damage and may halt the deterioration of 

angiogenesis. 

 

5.3. Age  

The mammary gland is highly sensitive to radiation-associated carcinogenesis, especially when exposures at 

young ages. The risk of contralateral breast cancer also finds higher in ˂45 years aged women after 10 years of 

receiving radiation (Fraass et al., 1985; Boice et al., 1992; Hankey et al., 1983). Besides this, in the case of early 

side effects, a higher prevalence of sleep problems and nausea is documented in younger patients after RT 

compared to the older patients (Hickok et al., 1996; Morrow, 1989). 

Some previous evidence also indicated that older breast cancer patients treated with RT resulted in a lower 

occurrence of pain in general when compared with younger breast cancer individuals (Tesarova, 2013). 

Lundstedt et al. (2012) reported that young age is related to a greater possibility of breast pain up to 17 years 

after RT (Lundstedt et al., 2012). Gartner et al. (2009) from their study on 3,253 Danish breast cancer 

individuals found that radiotherapy at a young age was associated with a high risk of pain (Gartner et al., 2009). 

Peuckmann et al. also showed similar results in a study with 1,316 women. In this study, the breast cancer 

patients treated with RT resulted in chronic pain (duration >6 months) at different parts of the body. Besides, 

they accepted that RT and young age were particularly linked with a high risk of pain (Peuckmann et al., 2009). 

Furthermore, enough data indicate that age greatly influences whether a woman will result in lifelong RT-

induced breast pain (Schroevers et al., 2006). 

 

5.4. Involvement of other diseases  

Inherited disorders such as ataxia-telangiectasia (AT) and Nijmegen breakage syndrome (NBS) are found to be 

associated with severe side effects of radiation, including an increased cancer risk after RT. In these disorders, 

the enhanced reaction to radiation could be demonstrated on the cellular level. For example, mutations in the 

ATM gene, encode a serine/threonine-protein kinase that is recruited and activated in response to DSBs and 

causes severe injury reactions in patients taking RT (Taylor et al., 1975). This indicates that rare cases of 

extreme sensitivity to radiation have a direct link with genetic disorders (Alsbeih et al., 2003; Andreassen et al., 

2009). 

 

6. Translational approach  

From the above text, it is clear that some patients develop severe late RT induced side effects while others 

experience mild side effects only. It is also clear that genetic makeup helps to define a patient’s radiosensitivity 

and is an important trigger for generating side effects. Therefore, the development of a prognostic tool to 

identify radiosensitive patients based on their genetic factors may allow personalized cancer treatment. Here a 

term is introduced called Radiogenomics, which is a genome-wide approach to characterize genetic predictors 

responsible for adverse radiotherapy effects. The goals of Radiogenomics are to 1) develop a predictive assay 

for identifying cancer patients who are most likely to develop severe radiotherapy side effects resulting from 

treatment with a standard RT protocol, and 2) to gather information on the molecular pathways which are 

responsible for radiation-induced tissue toxicities (West et al., 2010; West and Rosenstein, 2010). 

Radiogenomics studies are still in early stages; however identifying a large number of SNPs that have been 

replicated and validated in large, diverse cohorts may augment its chance to transit from bench to bedside 

(Ritchie, 2012).  
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Figure 2. Factors affecting the side effects of radiation in breast cancer patients. 

 

7. Conclusions 

Breast cancer radiotherapy is associated with varying degrees of direct side effects in conjunction with 

significant indirect factors. During radiotherapy along with tumor cells normal tissues are also exposed to 

radiation. Damage of these normal tissues induces both local and systemic responses manifested by acute 

radiation toxicity. The risks of RT can be fully understood only after long-term follow-up studies. The factors 

affecting the risks of RT become increasingly important issues in the management of patients with early breast 

cancer. Factors associated with inflammation are characterized as major molecules for producing systemic 

responses to irradiation. Thus, the molecules which are directly or indirectly associated with inflammation could 

be used as a sensitive marker to detect exposure to radiation and monitor radiation-induced toxicity. A wide 

evaluation of SNPs, which is correlated with acute or late radiation sensitivity may also help to develop a useful 

tool for assessing breast cancer risk and also for predicting the complications related to conventional 

radiotherapy. In conclusion, it can be said that radiation therapies while helping in dramatic improvements in 

breast cancer-specific mortality, also increases the risk of side effects. It is therefore important to have a good 

knowledge of the radiotherapy-induced side effects and their associated factors to limit them. 
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