Review

Moringa oleifera (Shajna): the wonderful indigenous medicinal plant

Mohammad Abu Taher
d, Mohammad Abu Bin Nyeem
d, Md. Monir Ahammed
d, Md. Mobarak Hossain
e and Mohammad Nazrul Islam
d

1Faculty of Unani and Ayurvedic Medicine, Hamdard University Bangladesh, Hamdard City of Science, Education & Culture, Gazaria, Munshiganj-1510, Bangladesh
2Govt. Unani and Ayurvedic Medical College and Hospital, Dhaka, Bangladesh

Corresponding author: Mohammad Abu Taher, Department of Unani Medicine, Faculty of Unani and Ayurvedic Medicine, Hamdard University Bangladesh, Hamdard City of Science, Education & Culture, Gazaria, Munshiganj-1510, Bangladesh. Phone: +8801710005600; E-mail: abutaher2005@yahoo.com

Received: 07 March 2017/Accepted: 23 March 2017/ Published: 30 March 2017

Abstract: ‘The Tree of Life’ or ‘Miracle Tree’ is the name of the plant of *Moringa oleifera* (Shajna). *Moringa oleifera* is one of the important plants in plant kingdom. Its leaves and fruits are used as vegetable in Indian subcontinent, at the same time each part of the plant rich with some important medicinal values. It is now considered as a valuable source of several unique products for the medicines against various diseases. The present review is to focus on the nutritive values, physico-chemical properties, phytochemicals and pharmacological activities of *M. oleifera*. Various parts of the plant like seeds, leaves, flowers, bark and fruits have been investigated for their significant pharmacological activity. Phyto-chemicals like flavanoid, anthraquinone, alkaloids, essential oils, tannic acid, carotene, glucose have been reported for significant antioxidant, hepatoprotective, anticancer, aphrodisiac, anti-inflammatory, antihyperlipidaemic, antihyperglycaemic and antiulcer activities of Drumstick tree and emphasizes the need for further exploring available information.

Keywords: *Moringa oleifera*; physico-chemical properties; phyto-chemicals and pharmacological activities

1. Introduction

M. Oleifera is commonly referred to as either Horse Radish tree (referring to the taste of its roots) or Drumstick tree (describing the shape of its pods) (Shih *et al.*, 2011) while less frequently referred to as ‘The Tree of Life’ or ‘Miracle Tree’ due to its economical importance and versatility (Abe and Ohtani 2013; Bakre *et al.*, 2013). A single genus with 14 known species, *M. oleifera* is the most widely known and utilized of these (Morton, 1991). *Moringa oleifera* is referred to as “Moringas”, it is considered one of the world’s most useful trees. Almost every part of moringa tree can be used for food or other beneficial applications (Quattrocchi and Umberto, 2000). It is native in Asia Minor, Africa, the Indian subcontinent (Bangladesh, India & Pakistan) (Somali *et al.*, 1984), and is also distributed in the Philippines, Cambodia, Central America, North and South America, and the Caribbean Islands (Morton, 1991). The tree ranges in height from 5 to12 m and the fruits (pods) are around 50 cm long. When mature, the fruit of *M. oleifera* becomes brown and has 10–50 seeds inside. Fully mature dry seeds are round or triangular in shape and the kernel is surrounded by a light woody shell with three papery wings (Abdulkarim *et al.*, 2005; Vlahov *et al.*, 2002). All parts of the Moringa tree–leaves, flowers, fruits, and roots are edible and have long been consumed as vegetables (Anwar and Bhanger, 2003; Siddhuraju and Becker, 2003). *Moringa oleifera* is esteemed as a versatile plant due to its multiple uses. The leaves, fruits, flowers and immature pods of this tree are edible and they form a part of traditional diets in many countries of the tropics and sub-tropics (Siddhuraju and Becker, 2003; Anhwange *et al.*, 2004). Moringa is rich in nutrition owing to the presence of a variety of essential phytochemicals present in its leaves, pods and seeds. In fact, moringa is said to
provide 7 times more vitamin C than oranges, 10 times more vitamin A than carrots, 17 times more calcium than milk, 9 times more protein than yoghurt, 15 times more potassium than bananas and 25 times more iron than spinach (Rockwood et al., 2013). Various parts of the plants such as leaves, roots, seeds, barks, fruits, flowers and immature pods act as cardiac and circulatory stimulants, possess antipyretic, antiepileptic, anti-inflammatory and antiulcer (Pal et al., 1995).

The leaves of *M. oleifera* are a good source of protein, vitamin A, B and C and minerals such as calcium and iron (Dahot, 1988). The leaves are outstanding as a source of vitamins A when raw as a source of vitamin C. They are also good sources of vitamin B and are among the best plant sources of minerals (Talhaliani and Kar, 2000). Moringa leaves have been consumed by Asian people for millennia as a healthy food product. Studies from other countries indicate that the leaves have immense nutritional value such as phytochemicals, vitamins, minerals, and amino acids (Anwar et al., 2007; Busani et al., 2011). Moringa leaves are known to have a high content of essential amino acids, proteins, minerals and vitamins, hence an ideal nutritional supplement (Fletcher, 1998). Many evidences exposed in which *M. oleifera* experienced several drug actions including antibacterial (Dayrit et al., 1990), antifungal, anti-inflammatory and diuretic activities (Cáceres et al., 1992). Moringa leaves have long been used by the public as a tasty vegetable and water purifier because of its coagulant properties (Ayotunde et al., 2011). Other moringa plant parts like flowers, roots, and bark also have good nutritional and therapeutic value (Olushola, 2006).

Moringa oleifera seed oil is pleasant tasting, highly edible (Lowell, 1999) and resembles olive oil in its fatty acid composition (Ramachandran et al., 1980). The characteristics of *M. oleifera* seed oil can be highly desirable especially with the current trend of replacing polysaturated vegetable oils with those containing high amounts of monounsaturated acids (Corbett, 2003). High oleic acid vegetable oils have been reported to be very stable even in highly demanding applications like frying (Warner and Knowlton, 1997).

The root from the young plant can also be dried and grounded for use as a hot seasoning base with a flavor similar to that of the horseradish. This is why Moringa tree has been given the name “Horseradish tree”. A tasty hot sauce from the roots can also be prepared by cooking them in vinegar (Deleveau and Boiteau, 1980). The root bark of *Moringa oleifera* contains 2 additional alkaloids (total alkaloids, 0.1%), viz. moringine, which is identical to benzylamine, and moringinine, belonging to the sympathomimetic group of bases. In addition, traces of an essential oil with a pungent smell, phytosterol, waxes, and resins are found in the moringa plant, and it contains a rich and rare combination of zeatin, quercetin, beta-sitosterol, caffeoylquinic acid, pterygospermin, and kaempferol (Hsu et al., 2006). Fruit (pod)/drum sticks and leaves have been used to combat malnutrition, especially among infants and nursing mothers for enhancing milk production (Dillard and Bruce German, 2000; Estrella et al., 2000) and also regulate thyroid hormone imbalance (Pal et al., 1995), (Talhaliani and Kar, 2000).

2. Plant description

Moringa oleifera, known popularly as *drumstick tree*, is a tropical plant grown for its nutritious leafy-greens, flower buds, and mineral-rich green fruit pods. It is a well-recognized member in the Moringaceae family of trees, and thought to be originated in the sub-Himalayan forests of the Indian subcontinent. It possesses horseradish-like root and, hence, known to the western world as horseradish tree.

3. Classification of plant

Kingdom: Plantae
Order: Brassicales
Family: Moringaceae
Genus: Moringa
Species: *Moringa oleifera*
Synonyms: **Guilandina moringa** L.

4. Different vernacular name

Bengali: Sajina, Sajna, Sajne
Urdu: Sehjan
Hindi: Shajona, Mungna
Gujarati: Sargavo, Sekato, Saragavo Parna
Kan.: Neegge, Nugele ele
Tamil: Murungai, Murungai Iali
Marathi: Sevaga, Segata, Segata pana, Shewgachi pane
Orissa: Sajana, Munga, Munika
5. **Distribution**

Native to India, Arabia, and possibly Africa and the East Indies; widely cultivated and naturalized in tropical Africa, tropical America, Sri Lanka, India, Mexico, Malabar, Malaysia and the Philippine Islands.

6. **Nutritive value of M. oleifera**

<table>
<thead>
<tr>
<th>Principle</th>
<th>Nutrient value-Pods</th>
<th>Nutrient value-Leaves</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy</td>
<td>37 Kcal (2%)</td>
<td>64 Kcal (3%)</td>
</tr>
<tr>
<td>Carbohydrates</td>
<td>8.53 g (6.5%)</td>
<td>8.28% (6%)</td>
</tr>
<tr>
<td>Protein</td>
<td>2.10 g (4%)</td>
<td>9.40 g (17%)</td>
</tr>
<tr>
<td>Total Fat</td>
<td>0.20 g (1%)</td>
<td>1.40% (7%)</td>
</tr>
<tr>
<td>Cholesterol</td>
<td>0 mg (0%)</td>
<td>0 mg (0%)</td>
</tr>
<tr>
<td>Dietary Fiber</td>
<td>3.2 g (8%)</td>
<td>2.0 g (5%)</td>
</tr>
<tr>
<td>Vitamins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Folates</td>
<td>44 µg (11%)</td>
<td>40 µg (10%)</td>
</tr>
<tr>
<td>Niacin</td>
<td>0.680 mg (4%)</td>
<td>2.220 mg (14%)</td>
</tr>
<tr>
<td>Pyridoxine</td>
<td>0.120 mg (9%)</td>
<td>1.200 mg (92%)</td>
</tr>
<tr>
<td>Riboflavin</td>
<td>0.074 mg (6%)</td>
<td>0.660 mg (51%)</td>
</tr>
<tr>
<td>Thiamin</td>
<td>0.053 mg (4.5%)</td>
<td>0.257 mg (21.5%)</td>
</tr>
<tr>
<td>Vitamin A</td>
<td>74 IU (2.5%)</td>
<td>7564 IU (252%)</td>
</tr>
<tr>
<td>Vitamin C</td>
<td>141 mg (235%)</td>
<td>51.7 mg (86%)</td>
</tr>
<tr>
<td>Electrolytes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium</td>
<td>42 mg (3%)</td>
<td>9 mg (0.5%)</td>
</tr>
<tr>
<td>Potassium</td>
<td>461 mg (10%)</td>
<td>337 mg (7%)</td>
</tr>
<tr>
<td>Minerals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium</td>
<td>30 mg (3%)</td>
<td>185 mg (18.5%)</td>
</tr>
<tr>
<td>Iron</td>
<td>0.36 mg (4.5%)</td>
<td>4.00 mg (50%)</td>
</tr>
<tr>
<td>Magnesium</td>
<td>45 mg (11%)</td>
<td>147 mg (37%)</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>50 mg (9%)</td>
<td>112 mg (20%)</td>
</tr>
<tr>
<td>Selenium</td>
<td>8.2 µg (15%)</td>
<td>0.9 µg (1.5%)</td>
</tr>
<tr>
<td>Zinc</td>
<td>0.45 mg (4%)</td>
<td>0.60 mg (5%)</td>
</tr>
</tbody>
</table>

(Source: USDA National Nutrient data base)

7. **Characteristic features of Moringa oleifera**

Moringa oleifera is a tree that is sometimes called the Tree of Life or a Miracle Tree. *Moringa oleifera* is a small, graceful, deciduous tree with sparse foliage, often resembling a leguminous species at a distance, especially when in flower, but immediately recognized when in fruit. The tree grows to 8 m high and 60 cm dbh. Bole crooked, often forked from near the base. Bark smooth, dark grey; slash thin, yellowish. Twigs and shoots shortly but densely hairy. Crown wide, open, typically umbrella shaped and usually a single stem; often deep rooted. The wood is soft (Orwa et al., 2009).
7.1. Leaves
The large alternately arranged leaves are borne on petioles 4-15 cm long. These leaves are tri-pinnate and usually 25-60 cm long, but they may occasionally be as small as 6.5 cm long and as large as 90 cm long. The leaves have 5-11 main branches that are pulvinate.

7.2. Fruits
In appearance, the Moringa tree's fruit resembles long, thin beans or pea pods. During vegetative growth they are white in color, changing to brown when they reach maturity. The seeds inside, which are as highly prized by local populations as the fruit, number between 5 to 20 per fruit. The fruit itself is characterized by a taste that can be described as similar to asparagus. Moringa tree fruit look somewhat like drumsticks, which is why it is sometimes referred to as the "drumstick tree".

7.3. Flowers
The fragrant *Moringa oleifera* flowers are creamy white in color, with yellow stamens. The flowers average about one inch in diameter and they first bloom when the tree is eight months old, and after that, *Moringa oleifera* blooms every year from the month of April until September.

7.4. Seeds
Moringa seeds are obtained from the pods of the moringa tree (*Moringa oleifera*) or the drumstick tree. Fresh and raw moringa seeds are quite tender, but as soon as they get dried, they become hard and start resembling small beans. The grayish-white seeds with unique wing-like structures can be steamed, boiled or roasted for various purposes.

7.5. Other parts of *M. oleifera*
It has a large underground rootstock and normally a single main trunk with a wide, open and typically umbrella-shaped crown. The trunk is generally 10-45 cm wide and covered in a pale-grey bark, but may occasionally reach up to 60 cm in diameter. Each of these branches is borne on a stalk 1-3 cm long and has 5-11 smaller branches.

![Figure 1. Leafs and fruits of drum-stick.](image-url)

8. Chemical constituents

<table>
<thead>
<tr>
<th>Parts</th>
<th>Phytochemical constituents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roots</td>
<td>4-(α-L-rhamnopyranosyloxy)-benzylglucosinolate and benzylglucosinolate 10</td>
</tr>
<tr>
<td>Stem</td>
<td>4-hydroxymellein, vanillin, β-sitosterone, octacosanic acid and β-sitosterol 11</td>
</tr>
<tr>
<td>Bark</td>
<td>4-(α-L-rhamnopyranosyloxy)-benzylglucosinolate 10</td>
</tr>
<tr>
<td>Whole gum exudates</td>
<td>L-arabinose, D-galactose, D-glucuronic acid, L-rhamnose, D-mannose, D-xylene and leucoanthocyanin 12-13</td>
</tr>
<tr>
<td>Leaves</td>
<td>Glycoside niazirin, niazirinin and three mustard oil glycosides, 4-[4'-O-acetyl- α-L-rhamnosyloxy) benzyl isothiocyanate, niaziminin A and B 14-15</td>
</tr>
<tr>
<td>Mature flowers</td>
<td>D-mannose, D-glucose, protein, ascorbic acid, polysaccharide 16</td>
</tr>
<tr>
<td>Whole pods</td>
<td>Nitriles, isothiocyanate, thiocarbanates, 0-[2'-hydroxy-3'-(2''-heptenyloxy)]-propylundecanoate, 0-ethyl-4-[(α -1-L-rhamnopyranosyloxy)-benzyl carbamate, methyl-p-hydroxybenzoate and β-sitosterol 14-15</td>
</tr>
<tr>
<td>Mature seeds</td>
<td>Crude protein, Crude fat, carbohydrate, methionine, cysteine, 4-(α-L-rhamnopyranosyloxy)-benzylglucosinolate, benzylglucosinolate, moringyne, mono-palmitic and di-oleic triglyceride 10</td>
</tr>
<tr>
<td>Seed oil</td>
<td>Vitamin A, beta carotene, precursor of Vitamin A 17-18</td>
</tr>
</tbody>
</table>
Table 2. Quantitative Phytochemical Result of the Aqueous and Ethanolic Leaf Extracts of *Moringa oleifera* (Nweze et al., 2014).

<table>
<thead>
<tr>
<th>Phytochemical</th>
<th>Aqueous extract</th>
<th>Ethanolic extract</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flavonoid</td>
<td>3.56 ± 0.03</td>
<td>3.83±0.02*</td>
</tr>
<tr>
<td>Anthraquinone</td>
<td>11.68±0.04*</td>
<td>10.86±0.06</td>
</tr>
<tr>
<td>Alkaloids</td>
<td>3.07±0.00*</td>
<td>2.26±0.04</td>
</tr>
<tr>
<td>Saponins</td>
<td>1.46±0.03</td>
<td>1.72±0.05*</td>
</tr>
<tr>
<td>Steroids</td>
<td>3.21±0.00*</td>
<td>3.12±0.02</td>
</tr>
<tr>
<td>Terpenoids</td>
<td>4.84±0.05*</td>
<td>4.26±0.06</td>
</tr>
<tr>
<td>Cardiac glycoside</td>
<td>0.36±0.03*</td>
<td>0.19±0.02</td>
</tr>
<tr>
<td>Anthocyanin</td>
<td>0.06±0.00*</td>
<td>0.05±0.00</td>
</tr>
<tr>
<td>Tannins</td>
<td>9.36±0.04*</td>
<td>9.19±0.02</td>
</tr>
<tr>
<td>Carotenoids</td>
<td>1.16±0.05*</td>
<td>0.08±0.02</td>
</tr>
</tbody>
</table>

* significant at P < 0.05

9. Physico-chemical properties of *M. oleifera*

The *Moringa oleifera* was analyzed for proximate analysis and the results are shown in the following table.

Table 3. Proximate analysis of *Moringa oleifera* leaves (Sobhy et al., 2015).

<table>
<thead>
<tr>
<th>Proximate analysis</th>
<th>Nutrient Conc. (g.100g-1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture</td>
<td>10.74g.100g-1±0.05</td>
</tr>
<tr>
<td>Ash</td>
<td>4.56g.100-1±0.13</td>
</tr>
<tr>
<td>Fiber</td>
<td>11.23g.100-1±0.16</td>
</tr>
<tr>
<td>Protein</td>
<td>9.38g.100g-1±0.23</td>
</tr>
<tr>
<td>Lipid</td>
<td>7.76g.100g-1±0.21</td>
</tr>
<tr>
<td>Carbohydrate</td>
<td>56.33g.100g-1±0.27</td>
</tr>
<tr>
<td>Energy (K Cal)</td>
<td>332.68±0.06</td>
</tr>
</tbody>
</table>

Table 4. Proximate composition (mg/100g) of raw and defatted *Moringa oleifera* seeds (Peter and Alikwe, 2014).

<table>
<thead>
<tr>
<th>Nutrients</th>
<th>Raw samples</th>
<th>Defatted samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture contents</td>
<td>9.97±0.09a</td>
<td>9.40±0.10b</td>
</tr>
<tr>
<td>Protein</td>
<td>35.97±0.19a</td>
<td>17.13±0.13b</td>
</tr>
<tr>
<td>Crude fat</td>
<td>38.67±0.03a</td>
<td>8.57±0.18b</td>
</tr>
<tr>
<td>Ash</td>
<td>3.87±0.09a</td>
<td>3.47±0.07a</td>
</tr>
<tr>
<td>Crude fibre</td>
<td>2.87±0.03a</td>
<td>3.33±0.09a</td>
</tr>
<tr>
<td>Carbohydrates (By difference)</td>
<td>8.67±0.12a</td>
<td>57.77±0.12b</td>
</tr>
</tbody>
</table>

Values are means (±SEM) of triplicate samples. Means with different superscripts in the same row show significant difference (P < 0.05).

10. Pharmacological studies

10.1. Anti-inflammatory

Moringa oleifera seeds of hydro-alcoholic extract (MSHE) and its chloroform fraction (MCF) were effective to reduce weight of distal colon (8 cm) as a marker for inflammation and tissue edema. Three doses of MSHE and two greater doses of MCF (100 and 200 mg/kg) were effective to reduce ulcer severity, area, and index as well as mucosal inflammation severity (Mohsen Minaiyan et al., 2014). Hot water infusions of flowers, leaves, roots, seeds and bark also showed anti-inflammatory activity against carrageenan-induced hind paw edema. The seed infusion showed anti-inflammatory and diuretic activity at 1000 mg/kg (Caceres et al., 1992).

10.2. Antioxidant

Aqueous extract of *Moringa oleifera* exhibited strong scavenging effect on 2, 2-diphenyl-2-picryl hydrazyl (DPPH) free radical, superoxide, nitric oxide radical and inhibition of lipid per oxidation. The free radical scavenging effect of *Moringa oleifera* leaf extract was comparable with that of the reference antioxidants (Sreelatha and Padma, 2009). The oil from the dried seeds showed higher antioxidant activity than butylated
hydroxyl toluene and alpha-tocopherol (Lalas and Tsaknis, 2002). Aqueous, methanol (80%) and ethanol (70%) extracts of freeze-dried leaves showed radical scavenging and antioxidant activities. All the extracts were capable of scavenging peroxyl and superoxyl radicals. The major bioactive compounds of phenolics were found to be flavonoid groups such as quercetin and kaempferol. The drumstick leaves are found to be a potential source of natural antioxidants (Siddhuraju and Becker, 2003).

10.3. Antimicrobial activities
The aqueous and methanol extracts of the seeds of Moringa oleifera and the seeds of Mormordica charantia were screened for their antimicrobial activity against three human pathogenic bacterial strains and three fungal strains by agar-well diffusion assay. The pattern of inhibition varied with the solvent used for extraction and the microorganisms tested (Shoba et al., 2014). Moringa roots have antibacterial activity and are reported to be rich in antimicrobial agents. These are reported to contain an active antibiotic principle, pterygospermin which has powerful antibacterial and fungicidal effects (Fahey et al., 2001).

The antimicrobial activity of leaves, root, bark and seeds were also investigated against bacteria, yeast, dermatophytes and helminths pathogenic to man. The fresh leaf juice and aqueous extract of seeds inhibited the growth of Pseudomonas aeruginosa and Staphylococcus aureus (Caceres et al., 1991). The seed extract exhibited significant antibacterial activity against pyodermia (skin infection) causing bacterium, S. aureus in experimental mice (Caceres and Lopez, 1991).

10.4. Cardiovascular activities
Biochemical study of 15 days for evaluation of cardiac activity of methanolic extract of Moringa oleifera roots on cardiac enzymes and cytosolic Ca 2+ level was also performed. Methanolic extract of Moringa oleifera showed significant (p<0.001) increase in force of contraction and cardiac output in normal and hypodynamic heart preparations. These activities were inhibited by propranolol which indicates its sympathomimetic activity. It significantly increased cytoplasmic Ca 2+ level after 15 day treatment (Ganatra, 2012). The alkaloids obtained by fractionation of the water extract of the leaves converted into their salt form, were tested for their activity on the isolated frog heart. The total alkaloidal salts were found to produce a negative inotropic effect on the isolated perfused frog heart. This activity was further characterized by testing it on the isolated guinea pig ileum (Dangi, 2002).

10.5. Antihyperlipidaemic activities
Albino Wistar rats were fed with methanolic extract of M. oleifera (150, 300 and 600 mg/kg, p.o.) along with hyperlipidemic diet for 30 days. Moringa oleifera and simvastatin were found to lower the serum cholesterol, triacylglyceride, VLDL, LDL, and atherogenic index, but were found to increase the HDL as compared to the corresponding high fed cholesterol diet group (control) (Pankaj et al., 2010). Fruits of M. oleifera were reported to possess hypolipidaemic effect. They were found to lower the serum cholesterol, phospholipid, triglyceride, VLDL, LDL, cholesterol to phospholipid ratio and atherogenic index in hypercholesterolaemic rabbits, but were found to increase the HDL ratio (HDL/HDL-total cholesterol) as compared to the corresponding control groups (Mehta et al., 2003).

10.6. Antifertility activities
The work deals with antifertility effect of the alcoholic extract of Moringa oleifera stem bark in female albino rats. The effect of alcoholic extract of M. oleifera stem bark on estrogenic activity and estrous cycle was observed to confirm the antifertility activity (Varsha and Dineshr, 2015). Bark of drumstick tree was screened for its antifertility effect on early pregnancy in albino rats. The aqueous extract of root and bark at a dose of 200 mg/kg and 400 mg/kg, respectively showed post-coital antifertility effect in rat and also induced foetal resorption at late pregnancy (Prakash et al., 1987).

10.7. Anticancer activities
Paste of drumstick leaves has been screened for its influence on the carcinogen detoxifying glutathione-S-transferase (GST) in Swiss mice. It increased GST activity by more than 78% in the stomach, liver and oesophagus and show protective activity against carcinogenesis. The crude ethanolic extract of seeds exhibited anti-tumour activity against Epstein-Barr virus-early antigen (EBV-EA) (Guevara, 1999). It has been found that niaziminin a thio-carbamate from the leaves of M. oleifera, exhibits inhibition of tumor-promoter-induced Epstein–Barr virus activation. On the other hand, among the isothiocyanates, naturally occurring 4-[(4′-O-acetyl-α-i-rhamnosyloxy) benzyl], significantly inhibited tumor-promoter-induced Epstein–
Barr virus activation, suggesting that the isothiocyanate group is a critical structural factor for activity (Murakami et al., 1998).

10.8. Antitumor activities
Moringa leaves to be a potential source for antitumor activity. O-ethyl-4-(α-L-rhamnosyloxy) benzyl carbamate together with 4(α-L-rhamnosyloxy)-benzyl isothiocyanate, niazimicin and 3-O-(6'-O-oleyl-β-D-glucopyranosyl)-β-sitosterol have been tested for their potential antitumor promoting activity using an in vitro assay which showed significant inhibitory effects on Epstein–Barr virus-early antigen (Makonnen et al., 1997). *Moringa oleifera* leaf extract revealed antitumor, antigenotoxic and anticytotoxic activities in EST-mice. (Wagdy et al., 2014).

10.9. Antihepatotoxic activities
The methanol fraction of *M. oleifera* leaf extract showed antiulcerogenic and hepatoprotective effects in rats (Pal et al., 1995a). Oral administration of an ethanolic extract of *M. oleifera* leaves showed a significant protective action made evident by its effect on the levels of glutamic oxaloacetic transaminase (aspartate aminotransferase), glutamic pyruvic transaminase (alanine aminotransferase), alkaline phosphatase, and bilirubin in the serum; lipids, and lipid peroxidation levels in liver (Pari et al., 2002). Treatment with *M. oleifera* @ 500 mg/kg significantly (p<0.01) decreased the elevated ALP, AST, ALT, LPO levels and increase in SOD levels, and as compared to cadmium chloride treated group (Reetu et al., 2015).

10.10. Antiulcer activities
The methanolic extract of drumstick leaves inhibited gastric lesion formation induced by aspirin, serotonin or indomethacin in rats (Kumar and Pari, 2003). The methanolic extract of flower buds showed antiulcerogenic activity against aspirin induced gastric ulcer at a dosage of 4g/kg body weight (Pal, 1995). The methanol fraction of *M. oleifera* leaf extract showed antiulcerogenic and hepatoprotective effects in rats (Pal et al., 1995a).

10.11. Antispasmodic activities
The antispasmodic activity was demonstrated using isolated duodenum. The seed infusion showed a significant inhibition of acetylcholine-induced contraction (Cáceres et al., 1992). *M. oleifera* roots have been reported to possess antispasmodic activity. Moringa leaves have been extensively studied pharmacologically and it has been found that the ethanol extract and its constituents exhibit antispasmodic effects possibly through calcium channel blockade. The antispasmodic activity of the ethanol extract of *M. oleifera* leaves has been attributed to the presence of 4-[(α-L-rhamnosyloxy) benzyl]-o-methyl thiocarbamate 3 (trans), which forms the basis for its traditional use in diarrhea. Moreover, spasmyloytic activity exhibited by different constituents provides pharmacological basis for the traditional uses of this plant in gastrointestinal motility disorder (Gilani et al., 1994).

10.12. Antihyperglycaemic activities
The results showed that after one week of treatment, 77.78% and 88.9% of the animals in mistletoe and moringa treated diabetic groups became normoglycemic, respectively (Adeeyo et al., 2013). The blood glucose levels and the corresponding insulin levels in response to drumstick leaves in southern India were compared to the levels achieved in response to 75g of glucose in non-insulin dependent diabetes mellitus patients. The blood glucose response was 56% compared to 75g of glucose. It was concluded that the reduced blood glucose response to drumstick leaves is not due to insulin secretion (William et al., 1993).

10.13. Aphrodisiac activities
Aqueous, alcohol and chloroform extract of *M. oleifera* seed enhance sexual behaviour in male rats (Varsha et al., 2013). The effect of *M.oleifera* leaves extract on male sexual behaviors in animal model of sexual dysfunction. Moreover, the possible underlying mechanisms were also investigated. Approach: Male Wistar rats, weighing 200-250 g, had been orally given *M.oleifera* leaves extract at doses of 10, 50 and 250 mg kg−1BW once daily at 30 min before the exposure to 12-h immobilization stress for 14 days. They were assessed male sexual behaviors including mounting, intromission and ejaculation numbers and latencies after single administration and every 7 days until the end of experiment (Thawatchai et al., 2012).
Dried powder of leaf extract of common Indian plant *Moringa oleifera* of Moringaceae family was tested experimentally in albino rats in our laboratory for its antifertility activity. Cant per cent abortifacient activity was found when administered orally in aqueous solution at dose of 175 mg/kg body weight daily to Charles foster strain albino rats from days 5-10 post mated (Sethi et al., 1988). *M. oleifera* leaves may be abortifacient and it abortifacient potential occur in the 1st trimester of pregnancy (Ekhator and Osifo, 2015).

10.15. Reduce Arsenic toxicity
M. oleifera leaves also prevented the arsenic-induced perturbation of serum butyryl cholinesterase activity, total cholesterol and high density lipoprotein cholesterol (Sheikh et al., 2014).

10.16. Hyperthyroidism activities
The aqueous leaf extract of *Moringa oleifera* was evaluated for its ameliorative effect in the regulation of thyroidism in rat model. Male albino rats of 120-150 g were treated orally with doses of 500 mg/kg body weight (b.w.) and 250 mg/ kg b.w. of aqueous extract of *Moringa oleifera* leaf. Results show that T3 and T4 were increased and TSH was decreased significantly (p>0.05) at high doses compared to those in the control group (Wazida et al., 2013). *Moringa oleifera* leaf extract has been observed to decrease the conversion of T4 to T3 in female but not in male adult Swiss rats, therefore increasing the T4/T3 ratio (Tahiliani et al., 2000), indicating a potential use for therapy of hyperthyroidism. Similar effects were observed with *Aegle marmelos* extract, which was observed to decrease T3 with an increase in T4 serum concentration in male mice (Kar et al., 2002).

11. Conclusions
Moringa oleifera (Shajna) is a wonderful tree in plant kingdom. It is not only the possess the rich of nutritive values (e.g vitamin, mineral, protein, energy, carbohydrate and electrolyte) but contains a lot of medicinal value with important chemical constituents also. The present review shows the total description of moringa plants and their chemicals compositions, physico-chemical properties, pharmacological activities and how people are benefitted and how many experiments have been done by the drumstick. Different researches and studies for drumstick applications will be carried out in this regard.

Conflict of interest
None to declare.

References

Ganat F, 1998. Pharmacological studies on h

Gilani AH, K Aftab and A Suria, 1994. Pharmacological studies on h

Peter Taiwo Olagbemide Philip and CN Alikwe, 2014. Proximate Analysis and Chemical Composition of Raw and Defatted Moringa oleifera Kernel. Advances in Life Science and Technology., ISSN (Paper)2224-7181 ISSN (Online)2225-062X.

