ISSN-1729-5211

Effect of Nitrogen and Molybdenum on Post Harvest Soil Characteristics and Economic Yield of Bush Bean (Phaseolus vulgaris L.)

M. K. Hossain and M.S. Islam^{*}

Dept. of Soil Science, Patuakhali Science and Technology University, Patuakhali, Bangladesh. *Corresponding author: msaifulpstu@yahoo.com

Abstract

A field experiment was carried out at the research field of Sher-e-Bangla Agricultural University, Dhaka during December 2006 to February 2007 to study the effect of nitrogen and molybdenum on post harvest soil characteristics and economic yield of bush bean (*Phaseolus vulgaris* L.). The treatments consisted of 5 levels of N (0, 40, 80, 120 and 160 kg ha⁻¹) designated and 3 levels of Mo (0, 0.5 and 1.0 kg ha⁻¹). Urea and ammonium molybdate were used as the sources of nitrogen and molybdenum, respectively. The characteristics of the post harvest soils showed a marked variation in relation to soil pH, soil organic carbon, N, P, K and S content in the post harvest soil due to application of N and Mo. The highest organic carbon (0.60%) and total N (0.072%) was obtained from N₁₂₀. The highest organic carbon (0.63%) from N₁₂₀Mo_{0.5} treatment combination. The maximum total N was obtained (0.075%) from N₁₆₀Mo_{0.5} treatment combination. The results of economic analysis showed that the highest net benefit of Tk.1,68,722.00 ha⁻¹ was obtained in N₁₂₀Mo_{0.5} treatment and the lowest net benefit of Tk.16,559.00 ha⁻¹ was found in control.

Keywords: pH, organic carbon, N P K & S content in soil, economic yield

1. Introduction

Bush bean or french bean is an important vegetable crop which was originated in the Central and South America (Swiader et al., 1992). It is also known as kidney bean, snap bean, pinto bean, green bean, raj bean, navy bean, pole bean, wax bean, string bean and bonchi (Duke, 1983; Salukhe et al., 1987; Tindall, 1988). According to the recent FAO statistics, bush bean including other related species of the genus Phaseolus occupied 27.08 million hectares of the World's cropped area and the production of dry pods were about 18.94 million tons with an average yield of 699 kg ha⁻¹ (FAO, 2000). Hortex foundation exported 23.86 tons of vegetable bush bean during July- December 2001 (Anonymous, 2001). The crop shows high genotypic variability in pod and seed yield and those variations could be exploited for developing high yielding variety (Roy *et al.*, 2006).

Nitrogen nutrition is a major consideration for increasing yield and quality of bush bean. Molybdenum is an important micronutrient that is found deficient in most of the areas of Bangladesh. Evidences reveal that nitrogen and molybdenum fertilizers play an important role for french bean production (Ahmed, 1982). As a part of nitrogenase enzyme, Mo is essential for atmospheric nitrogen fixation. In addition, Mo availability is reduced in acidic soil. The yield of french bean may be increased through judicious combination of nitrogen, which is obviously much below the critical level in Bangladesh soils. This experiment was initiated to study the effect of nitrogen and molybdenum on the changes in post harvest

soil characteristics and economic productivity of bush bean.

2. Materials and Methods

The experiment was conducted at the research field of Sher-e-Bangla Agricultural University, Dhaka-1207, during December 2006 to February 2007 to determine the effect of N and Mo application on postharvest soil characteristics and economic productivity of bush bean (Phaseolus vulgaris L.). The soil of the experimental field belongs to the Tejgoan soil series of the Madhupur Tract (AEZ-28). Topsoil is silty clay loam in texture. Organic matter content is very low (1.34 %) and soil pH varies from 5.8 – 6, total N (%) was 0.08 and available S was 16.0 (ppm). There were 5 levels of Nitrogen, viz. 0, 40, 80, 120 and 160 kg N ha⁻¹ designated as N₀ (control), N₄₀ N₈₀ N₁₂₀ and N₁₆₀ respectively and three levels of Molybdenum such as 0, 0.5 and 1.0 kg Mo ha⁻¹ designated as Mo₀ (control), Mo_{0.5} and Mo_{1.0}, respectively. Thus, there were 15 treatment combinations in the experiment laid out in a randomized completely block design (RCBD) with three replications.

Required amounts of nitrogen and molybdenum fertilizers were applied as per treatments and all other fertilizers were applied in the whole plots as basal dose according to the Fertilizer Recommendation Guide (BARC, 2005). Sowing was done on 3 December, 2006. Green pods were harvested at regular intervals from each plot and their weight was recorded. The green pod yield plot⁻¹ was finally converted in to yield hectare⁻¹. Soil samples were collected from 5 cm depths after the harvesting of crop and mixed together to make a composite sample and was analyzed for soil pH, organic matter, total nitrogen, available phosphorus, exchangeable potassium and available sulphur.

Economical analysis was done in order to determine the most profitable treatment combinations. Calculation was done in details according to the procedure of Alam *et al.* (1989). Interest was calculated at the rate of 13% of six months and miscellaneous cost was considered as 5% of the total input cost. Data obtained from the experiment were analyzed statistically. The significance of the differences among pairs of treatment means was estimated by the least significant difference (LSD) test at 1% level of probability and DMRT was calculated (Gomez and Gomez, 1984).

3. Results and Discussion

3.1. Postharvest soil characteristics

The characteristics of the post harvest soils as influenced by different treatments showed a marked variation on soil pH, soil organic carbon, N, P, K and S content in the post harvest soil due to addition of N and Mo in soil.

3.1.1. Single and combined effect of nitrogen and molybdenum on soil pH

A significant variation was observed on soil pH after harvest, where the nitrogen and molybdenum were incorporated in soil (Table 1). Soil pH values of the post harvest soils ranged from 6.30 to 6.80 due to N application and 6.46 to 6.71 due to Mo application. The highest pH value (6.80) was recorded in N_{40} treatment which was statistically similar to that in N_{120} . The lowest pH value (6.30) was recorded in control treatment. The highest pH value (6.71) was recorded in $Mo_{0.5}$ treatment and the lowest (6.46) was in control treatment (Table 1). Combined application of different doses of nitrogen and molybdenum showed a significant effect on soil pH after harvest (Table 2). The soil pH ranged from 5.80 to 6.90. The higher soil pH (6.90) recorded in the treatments: N₁₂₀Mo_{0.5}, N₈₀Mo_{0.5}, N₁₆₀Mo_{0.5} which was statistically similar with N₁₂₀Mo_{1.0}, N₄₀Mo_{1.0}, N₁₆₀Mo₀. The minimum soil pH (5.80) was obtained in the control (Table 2). When N fertilizer was applied in the soil, it produces H⁺ in soil and cause soil acidity. Crop uptake of cations can either reduce or increase the soil acidity produced by nitrification of NH₄⁺ from fertilizers, crop and animal wastes.

Nitrogen Fertilizer	Soil pH	Organic carbon	Total N (%)	Available P (ppm)	Exchangeable K(meq100 g ⁻¹)	Available S (ppm)
(kg ha^{-1})		(%)				
N ₀	6.30 d	0.56 c	0.059 c	14.3	0.12	17.3
N_{40}	6.80 a	0.58 b	0.061 bc	16.9	0.13	16.7
N ₈₀	6.66 b	0.59 a	0.064bc	16.3	0.13	19.0
N ₁₂₀	6.70 ab	0.60 a	0.069 b	18.0	0.14	24.3
N ₁₆₀	6.58 c	0.60 a	0.072 a	18.9	0.14	25.3
LSD (1%)	0.081	0.018	0.0097	NS	NS	NS
CV%	4.28	5.31	6.49	5.54	4.34	6.18
Molybdenum Fe	rtilizer (kg ha	¹)				
Mo ₀	6.46 c	0.58 c	0.061	15	0.13	19
Mo _{.5}	6.71 a	0.60 a	0.068	18	0.14	22
Mo ₁	6.64 b	0.59 b	0.066	18	0.14	21
LSD (1%)	0.0626	0.0074	NS	NS	NS	NS
CV%	3.45	4.55	6.49	5.54	4.34	6.18

 Table 1. Effect of N and M_o fertilizers on soil pH, %Organic Carbon, total N, available P, exchangeable K and available S content in the soil after bush bean harvest

NS: Non significant

In a column figures having similar letter(s) do not differ significantly.

3.1.2. Single and combined effect of nitrogen and molybdenum on organic carbon content

A significant variation was observed on the organic carbon content after harvest, where the nitrogen and molybdenum was incorporated in soil .The organic carbon content of the post harvest soil ranged from 0.56 to 0.60% due to N application and 0.58 to 0.60% due to Mo application (Table 1). The maximum organic matter content (0.60%) was obtained in treatment N₁₂₀ and N₁₆₀ which was statistically similar with N_{80.} The minimum organic matter content (0.56%) was obtained in control treatment. The maximum organic carbon content (0.60%) was obtained in the treatment Mo_{0.5} and the minimum (0.56%) was obtained in control (Table 1). Combined application of different doses of nitrogen and molybdenum showed a significant effect on the organic carbon content in soil after harvest (Table 2). The organic carbon content in the post harvest soil ranged from 0.53 to 0.63 %. The higher organic carbon contents (0.63%) were recorded in the treatment $N_{120}Mo_{0.5}$ which was statistically similar with $N_{80}Mo_0$, $N_{160}Mo_0$, $N_0Mo_{0.5}$ and $N_{160}Mo_{1.0}$, and the minimum organic carbon content (0.53%) was obtained in control (Table 2). Organic carbon also increased due to addition of nitrogenous fertilizer in soil. The addition of extra N in soil accelerated residue decomposition by some microorganisms and encouraged the formation of soil organic matter.

3.1.3. Single and combined effect of nitrogen and molybdenum on the total N content

The total N content of the post harvest soil varied from 0.059 to 0.072% due to N application and 0.061 to 0.068% due to Mo application (Table 1). The highest total N content (0.072%) was observed in N₁₆₀ treatment and the lowest of 0.059% was in control. The highest total N content (0.068%) was observed in Mo_{0.5} treatment and the minimum value (0.061%) was found in control (Table 1). The combined effect of different doses of nitrogen and molybdenum resulted significant variations in nitrogen content in the post harvest soil (Table 2). The total N content in the post harvest soil ranged from 0.055 to 0.075%. The higher total N content of the post harvest contents (0.075%) were recorded in the treatment N₁₆₀Mo_{0.5} which was statistically similar with treatments N₁₂₀Mo_{0.} N₄₀Mo_{0.5}, N₈₀Mo_{0.5}, N₁₂₀Mo_{0.5}, N₈₀Mo_{1.0}, N₁₂₀ Mo_{1.0} and N₁₆₀Mo₁ and the lowest value of 0.055% in (N₀Mo₀) (Table 2). Total N in soil was changed due to application of nitrogenous fertilizer.

3.1.4. Single and combined effect of nitrogen and molybdenum on the available P content

The effect of applied of N and Mo at different levels showed no significant differences in P content in soil after harvest (Table 1). The P

content in post harvest soils ranged from 14.3 to 18.9 ppm due to N application and 15.0 to18.0 ppm due to Mo application (Table 1). The highest P content was recorded in N160 treatment (18.9 ppm) and the lowest (14.3 ppm) was found in the control. The highest P content (18.0ppm) was observed in Mo_{0.5} and Mo_{1.0} treatment and the minimum (15.0 ppm) was found in the control (Table 1). The combined effect of nitrogen and molybdenum showed no significant differences in P content in soil after harvest. The P content in the post harvest soil ranged from 12.0 ppm to 19.7 ppm. The highest P content (19.7 ppm) was observed in N₁₆₀Mo_{0.5} treatment and the minimum value (12.0 ppm) was found in the control (Table 2).

 Table 2.
 Combined effect of N and Mo fertilizers on soil pH, organic carbon, total N, available P, exchangeable K and available S content in the soil after bush bean harvest

Nitrogen \times Molybdenum (kg ha ⁻¹)	Soil pH	Organic carbon (%)	Total N (%)	Available P (ppm)	Exchangeable K(meq100 g ⁻¹)	Available S (ppm)
N ₀ Mo ₀	5.80 e	0.53 d	0.0 55 b	12.0	0.11	13.0
$N_{40} Mo_0$	6.80ab	0.59 b	0.056 b	13.0	0.12	16.0
$N_{80}Mo_0$	6.20d	0.62 a	0.060 b	15.0	0.12	18.0
$N_{120}Mo_0$	6.70b	0.53 d	0.065 ab	17.0	0.13	23.0
$N_{160}Mo_0$	6.80ab	0.62 a	0.062 b	17.7	0.13	23.3
N ₀ Mo _{.0.5}	6.90a	0.62 a	0.062 b	14.0	0.12	21.0
$N_{40}Mo_{.0.5}$	6.7 b	0.59 b	0.064 ab	18.0	0.13	13.0
$N_{80}Mo_{0.5}$	6.90 a	0.59 b	0.066 ab	18.0	0.13	19.0
$N_{120}Mo_{0.5}$	6.90a	0.63 a	0.073 ab	18.7	0.14	25.0
$N_{160}Mo_{0.5}$	6.90a	0.57c	0.075 a	19.7	0.15	26.7
$N_0 Mo_{1.0}$	6.10 d	0.60 b	0.059 b	17.0	0.12	18.0
$N_{40}Mo_{1.0}$	6.80ab	0.56 c	0.062 b	17.7	0.14	21.0
$N_{80} Mo_{1.0}$	6.60 b	0.59 b	0.065 ab	18.0	0.14	20.0
$N_{120}Mo_{1.0}$	6.80ab	0.57 c	0.070 ab	18.3	0.14	25.0
$N_{160}Mo_{1.0}$	6.50c	0.62 a	0.072 ab	19.3	0.14	26.0
LSD (1%)	0.015	0.017	0.013	NS	NS	NS

NS: Non significant

In a column figures having similar letter(s) do not differ significantly.

3.1.5. Single and combined effect of nitrogen and molybdenum on exchangeable K content

Applied N and Mo showed no significant effects on K content in soil after harvest (Table 1). The combined effect of nitrogen and molybdenum on K content in soil after harvest was not significant. The highest K content (0.15 mgq 100 g⁻¹) was observed in $N_{160}Mo_{0.5}$ treatment and the lowest (0.11 mgq 100 g⁻¹) was found in the control (Table 2).

3.1.6. Single and combined effect of nitrogen and molybdenum on the available S content

The effect of applied N and Mo was not significant on S content in soil after harvest (Table 1). The highest S content (25.3 ppm) was recorded in N_{160} treatment and the lowest (17.3 ppm) was in control. The highest S content in

(22.0 ppm) was observed in $Mo_{0.5}$ treatment and the lowest (19.0 ppm) was in control (Table 1). The effect of combined application of nitrogen and molybdenum showed no significant differences in respect of S content of soil after harvest (Table 2). The S content of the post harvest soil ranged from 13.0 ppm to 26.7 ppm. The highest S content (26.7 ppm) was observed in N₁₆₀Mo_{0.5} treatment.

3.2. Effect of nitrogen and molybdenum on the economic yield of bush bean

Applied N upto 120 kg ha⁻¹ generally increased pod yield. The largest pod yield around 18 t ha⁻¹ was gotten by N_{120} with or without $M_{0.0}$ (Table 3). The total cost of production varied from Tk. 89881/- to Tk. 91500/- among the treatment combinations.

 Table 3. Cost and benefit analysis of bush bean as influenced by different levels of nitrogen and molybdenum.

Treatment combination	Pod yield (t ha ⁻¹)	Gross return (Tk ha ⁻¹)	Total cost of production (Tkha ⁻¹)	Net return (Tk kgha ⁻¹)	Benefit cost ratio (BCR)
N ₀ Mo ₀	8.73	106440	89881	16559	1.18
N_{40} Mo ₀	13.94	167280	90147	77133	1.86
N $_{80}Mo_0$	14.62	175440	90413	85027	1.94
N120 MO0	18.00	246240	90680	155560	2.72
N_{160} Mo ₀	17.66	211920	90946	120974	2.33
N ₀ Mo _{.0.5}	12.14	145680	89482	56198	1.63
N ₄₀ Mo _{.0.5}	15.36	184320	89746	94574	2.05
N ₈₀ Mo _{0.5}	15.47	186000	90691	95309	2.05
N ₁₂₀ Mo.0.5	18.50	259680	90958	168722	2.85
N ₁₆₀ Mo _{0.5}	17.70	212400	91224	121176	2.33
$N_0 Mo_{1.0}$	11.90	127200	90437	36763	1.41
N_{40} Mo $_{1.0}$	17.52	210240	90702	119538	2.32
N ₈₀ Mo 1.0	15.34	184080	90968	93112	2.02
N ₁₂₀ Mo 1.0	18.24	230880	91235	139645	2.53
N ₁₆₀ Mo 1.0	17.84	214080	91500	122580	2.34
LSD (1%)	0.074	0.062	0.007	0.214	0.04

Price of Urea = Tk. 6.00 kg⁻¹ TSP = Tk. 15.00 kg⁻¹ MP = Tk. 15.00 kg⁻¹ Gypsum = Tk. 6.00 kg⁻¹ Zinc = TK. 50.00 kg⁻¹ Mo = TK. 500 kg⁻¹ Per labor wage = TK. 75.00 day⁻¹. Price of harvested green pod @ TK. 15,000/t BCR = Gross return: Total cost of production The variation in cost was due to variable cost of urea. The gross income was recorded from Tk.106440/- to Tk. 259680/- for the various treatment combinations (Table 3). The results are in agreement with that of Chandel et al. (2002), Singh and Verma (2002) and Tewari and Singh (2000). Net return varied from Tk.16559/- to 168722/-. The highest net income was obtained from the treatment combination of 120 kg N ha⁻¹ and 0.5 kg Mo ha⁻¹. The result also revealed that the highest net return (Tk.168722/-) was associated with the highest pod yield (18.50 t ha ¹). The benefit cost ratio was found to be the highest (2.85) in the treatment combination of 120 kg N and 0.5 kg Mo ha⁻¹ (Table 3). Here the highest net return (Tk.168722) showed the highest BCR (2.85). From economic point of view, the treatment combination of 120 kg N ha⁻¹ and 0.5 kg Mo ha⁻¹ was found to be the most suitable treatment combination for bush bean production.

4. Conclusions

It may be concluded that both nitrogen and molybdenum increased the nutrient content in soil after bush bean harvest. It was observed that the combination of 120 kg N and 0.5 kg Mo ha⁻¹ produced the highest bush bean pod yield and gave the highest economic return.

References

- Ahmed, S.1982. Crops response to applied molybdenum in Brahmaputra Flood Plain Soil of Bangladesh. *Bangladesh Journal of Soil Science*. 18: 36–41.
- Alam, M.S, Iqbal, T.M.T., Amin, M.S. and Gaffar. M.A. 1989. Krishitattik Fasaler Utpadan O Unnayan (in Bengali), Serajgonj, pp 231-239.
- Anonymous. 2001. HORTEX-Promoted export during Oct – Dec. 2001 compared with corresponding period last year. *Hortex Foundation Newsletter*, 1(4): 1-4.
- BARC (Bangladesh Agricultural Research Council) 2005. Fertilizer Recommendation Guide-2005. Soil Pub. No. 45. Farmgate, Dhaka, p 169.

- Chandel, R.S., Singh, R., Singh, R. S. and Singh, O.N. 2002. Influence of nitrogen levels and *Rhizobium* inoculation on yield, quality and nitrogen uptake of French bean (Phaseolus vulgaris L.). *Research on Crops.* 3(3): 524-528.
- Duke, J. A. 1983. Hand Book of Legumes of World Economic Importance (Second Ed.), Plenum Press, New York. 341, p.
- FAO. 2000. Production Year Book. Food and Agriculture Organization of the United Nations, Rome, Italy. 54: 108, p.
 - Gomez, A. K. and Gomez, A. A. (1984). Statistical Procedures for Agricultural Research. Second Edition. John Wiley and Sons, New York, U.S.A. 680, p.
 - Roy, S.K., Karim, M.A., Islam, A.K.M., Bari, M.N., Mian, M.K. and Hidaka, T. 2006. Relationship between yield and its component characters of bushbean (Phaseolus vulgaris L.). *South Pacific Studies*. 27: 13-23.
- Salukhe, D.K., Desai, B.B. and Bhat, N.R.1987. Leguminous Vegetables (Peas and Beans). In Vegetabes and Flower Seed Production, Agricole Publishing Academy, New Delhi. 265-302, pp.
- Singh, N.B and Verma, K.K. 2002. Nitrogen and phosphorus nutrition of french bean (*Phaseolus vulgaris* L.) grown in eastern Uttar Pradesh under late-sown condition. *Indian Journal of Agronomy*. 47(1): 89-93.
- Swiader, J. M., Ware, G .W. and Mccollum, J. P.1992. Producing Vegetable Crops. 4th ed. Interstate publishers. Inc. Danville. Illions. USA, 223-249, pp.
- Tewari, J.K. and Singh, S.S. 2000. Effect of nitrogen and phosphorus on growth and seed yield of French bean (*phaseolus* vulgaris L.). Vegetable Scencei. 27(2): 172-175.
- Tindall, H.D. 1988. Vegetable in The Tropics. Mcmillan Education Ltd., p 527.