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DETECTION AND CONTOURING OF BAU-KUL USING IMAGE 
PROCESSING TECHNIQUES

M. M. Rahman1* and M. M. H. Oliver1

Abstract

Automated grading and sorting of fruits during harvesting period are needed for securing 
better market prices. In order to introduce such automation facilities in Bangladesh, 
edging and contouring information of the locally grown fruits is important. This study 
reports the first endeavor towards the use of image processing techniques for a popular 
jujube variety (BAU-Kul) in Bangladesh. Image processing techniques were used for 
segmentation, and contouring on the basis of color Thresholding, edge detection and 
contour detection in Python-OpenCV software. Six random samples of BAU-Kul fruit 
were used for the research. Perimeter lengths obtained from the image analysis of the 
six samples ranged from 17.9 cm to 20.20 cm with an average of 19.29 (±1.02) cm. The 
measured lengths on the other hand, varied from 16.2 cm to 19.1 cm with an average 
of 17.75 (±1.3) cm. Consequently, the average error in calculation was limited to only 
7.98%. This indicates the fact that images captured through mobile devices can be used 
for detection and contouring of BAU-Kul samples with fairly high accuracy (92.02%). 
These information provides a foreground basis of automation for the grading and sorting 
systems of BAU-Kul fruits in Bangladesh.
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Introduction
Jujube (baroi) is one of the popular fruits 
containing vitamin A and C. It is used in 
different food preparations such as Jam, 
Jelly, Chatney, Pickles and Juice. There 
are many jujube varieties that reportedly 
contains 85.9% water, 0.8% protein, 0.1% 
fat, 12.8% carbohydrate, 0.03% calcium, 
0.03% phosphorus and 0.8% iron (Uddin 
and Hussain, 2012). In Bangladesh, 
popular varieties include Apple kul, BAU 
kul, BARI kul, Narkeli, and Sabzi. This 
study particularly deals with BAU-Kul 
developed by the Germplasm Center at 
Bangladesh Agricultural University. This 

variety is most popular in the country 
because of its attractive size and texture. 
It is widely grown in Bangladesh ranging 
from sandy to saline and hilly and char 
land areas (Rahman and Islam, 2013; KGF, 
2014). As with the other fresh produces, the 
market value of BAU-Kul depends on its 
sizes and color features. Although graders 
are available to separate products based 
on their sizes, no grading system based 
on the shape and colorimetric automation 
is available in Bangladesh. In particular, 
scientific information relating to separation 
and grading of BAU-Kul is not available in 
the literature. 
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In order to develop a real time, nondestructive, 
and automated grading-sorting system for 
any fruit, the factorial combination of the size 
(detection, contouring and edging), and color 
(segmentation) is important. This technology 
requires the help of advance image processing 
techniques that include color space model, 
color Thresholding, edge detection and contour 
detection. Color is a property of an individual 
object which comes from the visible light 
reflecting off the object surface. In combination 
with color, Hue Saturation Value (HSV) space 
model are often used to locate the defects on 
fruits’ surface in agricultural fields (Phakade et 
al., 2014). There has been reports (Blasco et al., 
2009; Lin et al., 2011) that color Thresholding 
can be used for the segmentation process of 
foreground images. Recent developments in 
automation has also experienced the use of 
Canny Edge detection method for the detection 
of edges in an image (Choudhary et al., 2017; 
Rajani and Veena, 2019). 

In such case, contour detection techniques 
are increasingly being used for analyzing 
noisy (Abubakar, 2013) and medical images 
(Senthilkumaran and Vaithegi, 2016). Similar 
approaches for computer vision technology 
for fruits (Feng and Qixin, 2004; Mahendran 
et al., 2012; Nandi et al., 2016; Sahu and 
Potdar, 2017) and vegetables (Deng et al., 

2017; Deulkar and Barve, 2018) have also 
been reported in the literature. More recently, 
a detailed contour based approach has 
been described by Septiarini et al. (2019). 
This emerging science of imaging has a 
potential application in the agricultural sector 
particularly, in the automatic grading (Banot 
and Mahajan, 2016; Nandi et al., 2016; 
Deulkar and Barve, 2018) and sorting of 
agricultural products. In order for automation 
of this sector in Bangladesh, computer 
vision and related researches are required. 
Despite being a promising technology, very 
few scientific studies of this kind have been 
carried out in Bangladesh. In particular, 
many uniquely shaped and colored fruits of 
Bangladesh (for instance, BAU-Kul) have not 
been studied using advanced techniques. This 
study is going to shed some light on this area 
by employing color segmentation and contour 
detection approaches for BAU-Kul images. 
In order to achieve this, necessary algorithms 
will be generated using Python-OpenCV as 
recommended by Devi et al. (2017), Koirala 
et al. (2019) and Yonekura et al. (2019). 
The outcome of this research will provide 
a substantial basis in the development of an 
automated grading-sorting system for BAU-
Kul products in Bangladesh.

Fig. 1. Overall architecture behind BAU Kul detection and contouring. 
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Materials and Methods
The overall process of the BAU-Kul detection 
system has been illustrated in the following 
(Fig. 1) flowchart. Theoretically, the process 
of BAU-Kul detection system involves low-
level processing and high level processing. In 
low-level processing, the digital color images 
were captured using a portable mobile devices. 
The captured RGB images were converted to 
HSV, and later to grayscale images in order to 
extract the Thresholding images. 

In high level processing, the image was then 
processed through the Canny Edge function 
in order to obtain the parametric shapes of 
BAU-Kul samples. At the final step, the 
Thresholding and Canny Edge images were 
used to obtain the desired fits of contours 
around the BAU-Kul samples (Table 1). 

The implementation of algorithm for contour 
fitting of BAU-Kul therefore, comprises of 

the following consecutive steps i.e., (a) image 
acquisition (b) pre-processing (c) thresholding 
followed by canny edge detection, and (d) 
contouring. These steps and their mathematical 
models have been described as follows:

(a) Image acquisition

Samples of BAU-Kul were collected from 
the local market in Dhaka city in the month 
of February, 2019. Six randomly collected 
BAU-Kul samples were pictured using mobile 
devices. A description of the experimental set 
up has been summarized in Table 2. 

The samples were laid out on a non-reflective 
surface, and naturally diffused sunlight (2-5 W/
m2) was used for capturing these images. The 
device was set a fixed height so as to keep the 
focal length within (26-33 mm) for all the images 
so that the shadow effects could be minimized. 
The captured images were then saved as a .jpg/.
jpeg format for further processing. 

Table 1. BAU-Kul detection and contouring algorithm
Algorithm Actions
Start

Step-1: Read BAU-Kul image into the Python-OpenCV Integrated Development 
Environment (IDE) from the particular folder.

Step-2: Convert RGB image into the HSV color and Gray color.
Step-3: Thresholding images by converting graysacle image into binary image and 

Canny edge detector uses for edge detection of BAU-Kul
Step-4: Contour fitting and determine the contour perimeter

Stop

Table 2. Experimental set up for image acquisition 
Properties Value Properties Value
Exposure value 0 Shutter speed (sec) 1/33

Color regime RGB Focal length (mm) 26-33 (equivalent to 35 mm focal 
length film)

White balance AWB ISO 400-500
Sample image size (pixel) 3456 × 4608 F-stop f/2.2
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(b) Image Pre-processing

The captured images were processed in 
two consecutive 
phases. In the first 
phase, Python-
OpenCV computer 
languages were 
used to process the 
BAU-Kul color 
(RGB) images 
for detection 
and contouring. 
Normally, RGB 
(Red Green Blue) 
defines color 
in terms of a 
combination of 
primary colors, 

where color information of the image is not 
separated from luminance. In contrast to RGB, 
HSV is used to separate image luminance 
from color information. That why, the RGB 
color images of the products were read into 
the Python-OpenCV Integrated Development 
Environment (IDE) and converted into the 
HSV color. The HSV model describes the 
colors similar to how human eyes tend to 
perceive color (Dash et al., 2017) and is often 
preferred over the RGB model. Use of HSV 
model is particularly chosen in situations 
where color description plays an integral 
role. In this model, ‘Hue’ represents the 
color, ‘Saturation’ represents the amount to 
which that respective color is mixed with 
white, and ‘Value’ represents the amount to 
which that respective color is mixed with 
black (Gray level). 

        
BAU Kul Sample-1 BAU Kul Sample-2

Fig. 2. BAU-Kul samples for image processing.

# Image reading from 
files image = cv2.
imread ('E:/BAU-Kul 
sample-1.jpg')

# Getting green HSV 
color representation 
hsv_img = cv2.
c v t C o l o r ( i m a g e , 
cv2.COLOR_BGR2HSV) 
cv2.imshow('HSV_
Image_1', hsv_img) 

# Converting the HSV 
image to Grayscale 
images
RGB_again = cv2.
c v t C o l o r ( h s v _
img, cv2.COLOR_
HSV2RGB) gray = cv2.
cvtColor(RGB_again, 
cv2.COLOR_RGB2GRAY) 
cv2.imshow('Gray_
Image', gray) 
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(c) Thresholding and Canny edge detection

The BAU-Kul 
sample images 
were segmented 
using Canny 
Edge and 
Thresholding . 

The action of Thresholding image segmented 
the image and produced binary images from 
a grayscale image. This is most effective in 
images with high levels of contrast (Shapiro 
George, 2002). The thresholding is used as 
an operation which involves tests against a 
function of threshold T of the form: 

# Thresholding function 
ret, threshold = cv2.
threshold(gray,90, 
255, 0)
cv2.imshow(‘Threshold 
Image’, threshold)

T=T[x,y, p(x,y), f(x,y)]………...............……………………………………………..……….   (1)

where, 

f(x,y) is the gray level point of 
(x,y), and 

p(x,y) indicates some local properties of this point. 

# Canny edge detection function
(ret, thresh) = cv2.threshold(gray, 0, 
255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)
edge = cv2.Canny(thresh, 100, 200)
cv2.imshow(‘Canny Edge_Image’, edge)

The threshold image is defined as, g(x,y)=1 
if f(x,y)>T, and g(x,y)=0 if f(x,y)≤T. Usually, 
if the image intensity, f(x,y) is less than a set 
threshold value of T, it is assumed to be a 
black pixel (Shapiro and George, 2002). 
Any higher value of f(x,y) otherwise yields 
a white dot. 

In addition, Canny Edge detection is also an 
image segmentation technique, which extracts 
useful structural information (Muthukrishnan 
and Radha, 2011) from different vision 
objects, and reduce dramatically the amount 
of data to be processed. This method is quite 
complex and have five-step processes (Canny, 
1986) that 

(i) de-noises the image with a 5×5 Gaussian filter: 
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(ii) calculates edge gradients and direction for each pixel: 
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(iii) applies non-maximum suppression (NMS) on edges obtained to thin out the edge ridges, and 

(iv) sets a double threshold on all the detected edges to eliminate false positives. 



20 Detection and Contouring of BAU-Kul Using Image Processing Techniques

It also analyzes 
all the edges and 
their connection 
to each other 
to keep the real 
edges and discard 
weaker ones 
(Minichino and 
Howse, 2015). In 
OpenCV, a single 
function is used 
to complete the 
whole process 
which is called 
c v 2 . C a n n y ( ) . 
During the edge 
detection, the 
points where 
the intensity of 
colors changes 
significantly are 
found, and turned 
on, while turning 
the rest of the 
pixels off. The 
edge pixels are in 
an image, and there is no particular requirement 
that the pixels representing an edge are all 
contiguous.

(d) Contour and contour perimeter 

Finally, cv2. find Contours() and cv2.
draw Contours() and functions were used 
to locate and visualize the contours in 
BAU-Kul images. Contour perimeter or 
curve length were also computed using the 
cv2.arcLength() function (Koirala et al., 
2019) which will evaluate the accuracy 
of manually determined perimeter with 
computed one.

Results and Discussion
HSV images produced from RGB originals 
of BAU-Kul sample image 1 and 2 have been 
shown in Fig. 3. This image is best for using 
the colors interactively. The HSV values are 
(143O, 8.2 %, 77%) for BAU-Kul sample 1 
and (143O, 8.6%, 73%) for BAU-Kul sample 2 
while the RGB color values of original images 
1 and 2 were counted to be (179, 195, 185) 
and (169, 185, 175), respectively. 

# Contour detection 
function and Contour 
approximation 
function
(contours, _) = cv2.
findContours(edge.
copy(), cv2.RETR_
EXTERNAL, cv2.CHAIN_
APPROX_SIMPLE)
total = 0

# for contour in 
contours:

epsilon = 0.001 *cv2.
arcLength(contour, 
True)approx = cv2.
approxPolyDP(contour, 
epsilon, True)
cv2.
drawContours(image, 
[approx], -1, (0, 0, 
255), 3)
total += 1
print (“I found {0} 
RET in that image”, 
format(total))
cv2.imshow(‘Contour_
Image’, image) 

# Calculation of 
contour perimeter
perimeter = cv2.
arcLength(cnt, True)
print(“Perimeter of 
contour:”, perimeter) 

HSV Image for Bau-Kul sample-1

HSV Image for BAU-Kul sample-2 

Fig. 3. HSV images for BAU Kul samples.
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Usually, HSV is much easier for a user to 
obtain a desired color as compared to using 
RGB (Poorani et al., 2013). Thresholding 
technique of BAU-Kul images isolates objects 
by converting grayscale images into binary 
images are shown in Fig. 4. 

Threshold Image for Bau-Kul sample-1

Threshold Image for Bau-Kul sample-2

Fig. 4. Thresholding images for BAU Kul samples.

This results showed that BAU-Kul image 
transformed into partially black and white, 
and the background of that images is 
transformed into completely white. In such 
kinds of thresholding techniques, the darker 
region (black and white) usually indicates the 
foreground (Efford, 2000) while the brighter 
(white) region is noted as the background. This 
however, would be useful for edge detection 
of the products as shown in Fig. 5. 

Canny Edge for Bau-Kul sample-1

Canny Edge for Bau-Kul sample-2

Fig. 5. Canny Edge images for BAU Kul samples.
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The results of Canny Edging of the input 
BAU-Kul samples (Fig. 5) are in fact, binary 
images in which the white pixels closely 
approximate the true edges of the original 
BAU-Kul product. However, some white 
dots were also identified in the middle of 
the image which apparently occurred due to 
the natural lights reflecting from the surface 
of the BAU-Kul sample when images were 
captured using mobile devices. The red color 
contours are obtained on the original BAU-
Kul images (Fig. 6), which provides the line 
segments corresponding to the shapes of the 
objects in the images. If the lightings during 
images capturing are properly made, the 
shadow of the fruits on the surface could be 
minimized, and the contour of BAU-Kul will 
be more accurate. This manuscript however, 
present a simple technique in which images 
captured from normal mobile devices can 
be used for such kinds of operation. In case 
of commercial operations however, proper 
lighting arrangements can significantly 
improve the accuracy of edge detection.

Contour for Bau-Kul sample-1

Contour for Bau-Kul sample-2

Fig. 6. Contour images for BAU Kul samples. 

Perimeter Quantification
The algorithm was also employed in computing 
the perimeter of all the six BAU-Kul samples 
as shown in Table 3. The obtained pixelated 
values were transformed into linear lengths in 
centimeter. In order for accurate calculation, a 
standard square of known dimensions (4 cm 
× 4 cm) were used for calibration purpose in 
each case. In addition, the actual lengths of 
the samples around their exact photographed 
edges were measured using a graduated scale 
with ±0.1 cm accuracy. 

The difference between the measured and the 
calculated values were termed and expressed 
as % errors. As can be seen from Table 3, the 
algorithm employed under this manuscript 
was able to predict the perimeters of the BAU-
Kul samples with considerable accuracy with 
errors ranging from 6.33 to 10.13%. The 
calculated lengths of the six samples ranged 
from 17.9 cm to 20.20 cm with an average 
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(±SD) of 19.29(±1.02) cm. The measured 
lengths on the other hand, varied from 16.2 
cm to 19.1 cm with an average (±SD) of 
17.75(±1.3) cm. Consequently, the average 
error was limited to only 7.98% (±1.02). This 
indicates the fact that the algorithms employed 

in this manuscript can be used for determining 
the BAU-Kul samples (Table 3) with 
considerable accuracy (92.02%) using images 
from mobile devices. If image acquisition can 
be done in a properly designed chamber, the 
accuracy can be substantially increased. 

Table 3. Evaluation of contour perimeter for selected BAU-Kul samples
Samples Calculated Perimeter (cm) Measured Perimeter (cm) % Error

S1 

17.90 16.20 9.49

S2 

20.20 18.90 6.46

S3  

19.36 17.40 10.13

S4 

20.39 19.10 6.33

S5 

19.67 18.00 8.49

S6 

18.22 16.90 7.22
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Conclusions
Image processing techniques are used to 
measure the qualities of fruits based on 
color space model, Thresholding, edge and 
contour detection methods. In this research, 
Thresholding segmentation, edge and contour 
detection were obtained from the color images 
of BAU-Kul by using Python-OpenCV 
platform. The edge and contour of BAU-
Kul images were found to be good enough 
to be used for operational purposes. The 
contours will however, be more accurate if 
the suitable lighting conditions are employed 
in order to minimize the shadow of images 
on the background surfaces. Nonetheless, 
the algorithms employed in this manuscript 
can be used for determining the BAU-
Kul samples with considerable accuracy 
(92.02%). The information generated from 
this research will be helpful for commercial 
grading and sorting facilities thriving for 
automation. This would ultimately help the 
growers get better price according to the 
shape and sizes of BAU-Kul.
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