
M. M. Rahman and M. M. H. Oliver 15

DETECTION AND CONTOURING OF BAU-KUL USING IMAGE
PROCESSING TECHNIQUES

M. M. Rahman1* and M. M. H. Oliver1

Abstract

Automated grading and sorting of fruits during harvesting period are needed for securing
better market prices. In order to introduce such automation facilities in Bangladesh,
edging and contouring information of the locally grown fruits is important. This study
reports the first endeavor towards the use of image processing techniques for a popular
jujube variety (BAU-Kul) in Bangladesh. Image processing techniques were used for
segmentation, and contouring on the basis of color Thresholding, edge detection and
contour detection in Python-OpenCV software. Six random samples of BAU-Kul fruit
were used for the research. Perimeter lengths obtained from the image analysis of the
six samples ranged from 17.9 cm to 20.20 cm with an average of 19.29 (±1.02) cm. The
measured lengths on the other hand, varied from 16.2 cm to 19.1 cm with an average
of 17.75 (±1.3) cm. Consequently, the average error in calculation was limited to only
7.98%. This indicates the fact that images captured through mobile devices can be used
for detection and contouring of BAU-Kul samples with fairly high accuracy (92.02%).
These information provides a foreground basis of automation for the grading and sorting
systems of BAU-Kul fruits in Bangladesh.

Keywords: BAU-Kul, contour detection, edge detection, image segmentation.

1Department of Agricultural Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University,
Gazipur 1706, Bangladesh. *Corresponding author: mostafizar-age@bsmrau.edu.bd

Ann. Bangladesh Agric. (2019) 23 (2) : 15-25 ISSN 1025-482X (Print)
 2521-5477 (Online)

Introduction
Jujube (baroi) is one of the popular fruits
containing vitamin A and C. It is used in
different food preparations such as Jam,
Jelly, Chatney, Pickles and Juice. There
are many jujube varieties that reportedly
contains 85.9% water, 0.8% protein, 0.1%
fat, 12.8% carbohydrate, 0.03% calcium,
0.03% phosphorus and 0.8% iron (Uddin
and Hussain, 2012). In Bangladesh,
popular varieties include Apple kul, BAU
kul, BARI kul, Narkeli, and Sabzi. This
study particularly deals with BAU-Kul
developed by the Germplasm Center at
Bangladesh Agricultural University. This

variety is most popular in the country
because of its attractive size and texture.
It is widely grown in Bangladesh ranging
from sandy to saline and hilly and char
land areas (Rahman and Islam, 2013; KGF,
2014). As with the other fresh produces, the
market value of BAU-Kul depends on its
sizes and color features. Although graders
are available to separate products based
on their sizes, no grading system based
on the shape and colorimetric automation
is available in Bangladesh. In particular,
scientific information relating to separation
and grading of BAU-Kul is not available in
the literature.

16 Detection and Contouring of BAU-Kul Using Image Processing Techniques

In order to develop a real time, nondestructive,
and automated grading-sorting system for
any fruit, the factorial combination of the size
(detection, contouring and edging), and color
(segmentation) is important. This technology
requires the help of advance image processing
techniques that include color space model,
color Thresholding, edge detection and contour
detection. Color is a property of an individual
object which comes from the visible light
reflecting off the object surface. In combination
with color, Hue Saturation Value (HSV) space
model are often used to locate the defects on
fruits’ surface in agricultural fields (Phakade et
al., 2014). There has been reports (Blasco et al.,
2009; Lin et al., 2011) that color Thresholding
can be used for the segmentation process of
foreground images. Recent developments in
automation has also experienced the use of
Canny Edge detection method for the detection
of edges in an image (Choudhary et al., 2017;
Rajani and Veena, 2019).

In such case, contour detection techniques
are increasingly being used for analyzing
noisy (Abubakar, 2013) and medical images
(Senthilkumaran and Vaithegi, 2016). Similar
approaches for computer vision technology
for fruits (Feng and Qixin, 2004; Mahendran
et al., 2012; Nandi et al., 2016; Sahu and
Potdar, 2017) and vegetables (Deng et al.,

2017; Deulkar and Barve, 2018) have also
been reported in the literature. More recently,
a detailed contour based approach has
been described by Septiarini et al. (2019).
This emerging science of imaging has a
potential application in the agricultural sector
particularly, in the automatic grading (Banot
and Mahajan, 2016; Nandi et al., 2016;
Deulkar and Barve, 2018) and sorting of
agricultural products. In order for automation
of this sector in Bangladesh, computer
vision and related researches are required.
Despite being a promising technology, very
few scientific studies of this kind have been
carried out in Bangladesh. In particular,
many uniquely shaped and colored fruits of
Bangladesh (for instance, BAU-Kul) have not
been studied using advanced techniques. This
study is going to shed some light on this area
by employing color segmentation and contour
detection approaches for BAU-Kul images.
In order to achieve this, necessary algorithms
will be generated using Python-OpenCV as
recommended by Devi et al. (2017), Koirala
et al. (2019) and Yonekura et al. (2019).
The outcome of this research will provide
a substantial basis in the development of an
automated grading-sorting system for BAU-
Kul products in Bangladesh.

Fig. 1. Overall architecture behind BAU Kul detection and contouring.

M. M. Rahman and M. M. H. Oliver 17

Materials and Methods
The overall process of the BAU-Kul detection
system has been illustrated in the following
(Fig. 1) flowchart. Theoretically, the process
of BAU-Kul detection system involves low-
level processing and high level processing. In
low-level processing, the digital color images
were captured using a portable mobile devices.
The captured RGB images were converted to
HSV, and later to grayscale images in order to
extract the Thresholding images.

In high level processing, the image was then
processed through the Canny Edge function
in order to obtain the parametric shapes of
BAU-Kul samples. At the final step, the
Thresholding and Canny Edge images were
used to obtain the desired fits of contours
around the BAU-Kul samples (Table 1).

The implementation of algorithm for contour
fitting of BAU-Kul therefore, comprises of

the following consecutive steps i.e., (a) image
acquisition (b) pre-processing (c) thresholding
followed by canny edge detection, and (d)
contouring. These steps and their mathematical
models have been described as follows:

(a) Image acquisition

Samples of BAU-Kul were collected from
the local market in Dhaka city in the month
of February, 2019. Six randomly collected
BAU-Kul samples were pictured using mobile
devices. A description of the experimental set
up has been summarized in Table 2.

The samples were laid out on a non-reflective
surface, and naturally diffused sunlight (2-5 W/
m2) was used for capturing these images. The
device was set a fixed height so as to keep the
focal length within (26-33 mm) for all the images
so that the shadow effects could be minimized.
The captured images were then saved as a .jpg/.
jpeg format for further processing.

Table 1. BAU-Kul detection and contouring algorithm
Algorithm Actions
Start

Step-1: Read BAU-Kul image into the Python-OpenCV Integrated Development
Environment (IDE) from the particular folder.

Step-2: Convert RGB image into the HSV color and Gray color.
Step-3: Thresholding images by converting graysacle image into binary image and

Canny edge detector uses for edge detection of BAU-Kul
Step-4: Contour fitting and determine the contour perimeter

Stop

Table 2. Experimental set up for image acquisition
Properties Value Properties Value
Exposure value 0 Shutter speed (sec) 1/33

Color regime RGB Focal length (mm) 26-33 (equivalent to 35 mm focal
length film)

White balance AWB ISO 400-500
Sample image size (pixel) 3456 × 4608 F-stop f/2.2

18 Detection and Contouring of BAU-Kul Using Image Processing Techniques

(b) Image Pre-processing

The captured images were processed in
two consecutive
phases. In the first
phase, Python-
OpenCV computer
languages were
used to process the
BAU-Kul color
(RGB) images
for detection
and contouring.
Normally, RGB
(Red Green Blue)
defines color
in terms of a
combination of
primary colors,

where color information of the image is not
separated from luminance. In contrast to RGB,
HSV is used to separate image luminance
from color information. That why, the RGB
color images of the products were read into
the Python-OpenCV Integrated Development
Environment (IDE) and converted into the
HSV color. The HSV model describes the
colors similar to how human eyes tend to
perceive color (Dash et al., 2017) and is often
preferred over the RGB model. Use of HSV
model is particularly chosen in situations
where color description plays an integral
role. In this model, ‘Hue’ represents the
color, ‘Saturation’ represents the amount to
which that respective color is mixed with
white, and ‘Value’ represents the amount to
which that respective color is mixed with
black (Gray level).

BAU Kul Sample-1 BAU Kul Sample-2

Fig. 2. BAU-Kul samples for image processing.

Image reading from
files image = cv2.
imread ('E:/BAU-Kul
sample-1.jpg')

Getting green HSV
color representation
hsv_img = cv2.
c v t C o l o r (i m a g e ,
cv2.COLOR_BGR2HSV)
cv2.imshow('HSV_
Image_1', hsv_img)

Converting the HSV
image to Grayscale
images
RGB_again = cv2.
c v t C o l o r (h s v _
img, cv2.COLOR_
HSV2RGB) gray = cv2.
cvtColor(RGB_again,
cv2.COLOR_RGB2GRAY)
cv2.imshow('Gray_
Image', gray)

M. M. Rahman and M. M. H. Oliver 19

(c) Thresholding and Canny edge detection

The BAU-Kul
sample images
were segmented
using Canny
Edge and
Thresholding .

The action of Thresholding image segmented
the image and produced binary images from
a grayscale image. This is most effective in
images with high levels of contrast (Shapiro
George, 2002). The thresholding is used as
an operation which involves tests against a
function of threshold T of the form:

Thresholding function
ret, threshold = cv2.
threshold(gray,90,
255, 0)
cv2.imshow(‘Threshold
Image’, threshold)

T=T[x,y, p(x,y), f(x,y)]………...............……………………………………………..………. (1)

where,

f(x,y) is the gray level point of
(x,y), and

p(x,y) indicates some local properties of this point.

Canny edge detection function
(ret, thresh) = cv2.threshold(gray, 0,
255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)
edge = cv2.Canny(thresh, 100, 200)
cv2.imshow(‘Canny Edge_Image’, edge)

The threshold image is defined as, g(x,y)=1
if f(x,y)>T, and g(x,y)=0 if f(x,y)≤T. Usually,
if the image intensity, f(x,y) is less than a set
threshold value of T, it is assumed to be a
black pixel (Shapiro and George, 2002).
Any higher value of f(x,y) otherwise yields
a white dot.

In addition, Canny Edge detection is also an
image segmentation technique, which extracts
useful structural information (Muthukrishnan
and Radha, 2011) from different vision
objects, and reduce dramatically the amount
of data to be processed. This method is quite
complex and have five-step processes (Canny,
1986) that

(i) de-noises the image with a 5×5 Gaussian filter:

, , * , , expg m n G m n f m n where G
m n

2
1

22 2

2 2

rv v= = - +
v v^ ^ ^ bh h h l (2)

(ii) calculates edge gradients and direction for each pixel:

 , , , , , [
,
,

]tanG m n g m n g m n and m n
g m n
g m n

m n
m

n
2 2 1i= + = -^ ^ ^ ^ ^

^h h h h h
h

 (3)

(iii) applies non-maximum suppression (NMS) on edges obtained to thin out the edge ridges, and

(iv) sets a double threshold on all the detected edges to eliminate false positives.

20 Detection and Contouring of BAU-Kul Using Image Processing Techniques

It also analyzes
all the edges and
their connection
to each other
to keep the real
edges and discard
weaker ones
(Minichino and
Howse, 2015). In
OpenCV, a single
function is used
to complete the
whole process
which is called
c v 2 . C a n n y () .
During the edge
detection, the
points where
the intensity of
colors changes
significantly are
found, and turned
on, while turning
the rest of the
pixels off. The
edge pixels are in
an image, and there is no particular requirement
that the pixels representing an edge are all
contiguous.

(d) Contour and contour perimeter

Finally, cv2. find Contours() and cv2.
draw Contours() and functions were used
to locate and visualize the contours in
BAU-Kul images. Contour perimeter or
curve length were also computed using the
cv2.arcLength() function (Koirala et al.,
2019) which will evaluate the accuracy
of manually determined perimeter with
computed one.

Results and Discussion
HSV images produced from RGB originals
of BAU-Kul sample image 1 and 2 have been
shown in Fig. 3. This image is best for using
the colors interactively. The HSV values are
(143O, 8.2 %, 77%) for BAU-Kul sample 1
and (143O, 8.6%, 73%) for BAU-Kul sample 2
while the RGB color values of original images
1 and 2 were counted to be (179, 195, 185)
and (169, 185, 175), respectively.

Contour detection
function and Contour
approximation
function
(contours, _) = cv2.
findContours(edge.
copy(), cv2.RETR_
EXTERNAL, cv2.CHAIN_
APPROX_SIMPLE)
total = 0

for contour in
contours:

epsilon = 0.001 *cv2.
arcLength(contour,
True)approx = cv2.
approxPolyDP(contour,
epsilon, True)
cv2.
drawContours(image,
[approx], -1, (0, 0,
255), 3)
total += 1
print (“I found {0}
RET in that image”,
format(total))
cv2.imshow(‘Contour_
Image’, image)

Calculation of
contour perimeter
perimeter = cv2.
arcLength(cnt, True)
print(“Perimeter of
contour:”, perimeter)

HSV Image for Bau-Kul sample-1

HSV Image for BAU-Kul sample-2

Fig. 3. HSV images for BAU Kul samples.

M. M. Rahman and M. M. H. Oliver 21

Usually, HSV is much easier for a user to
obtain a desired color as compared to using
RGB (Poorani et al., 2013). Thresholding
technique of BAU-Kul images isolates objects
by converting grayscale images into binary
images are shown in Fig. 4.

Threshold Image for Bau-Kul sample-1

Threshold Image for Bau-Kul sample-2

Fig. 4. Thresholding images for BAU Kul samples.

This results showed that BAU-Kul image
transformed into partially black and white,
and the background of that images is
transformed into completely white. In such
kinds of thresholding techniques, the darker
region (black and white) usually indicates the
foreground (Efford, 2000) while the brighter
(white) region is noted as the background. This
however, would be useful for edge detection
of the products as shown in Fig. 5.

Canny Edge for Bau-Kul sample-1

Canny Edge for Bau-Kul sample-2

Fig. 5. Canny Edge images for BAU Kul samples.

22 Detection and Contouring of BAU-Kul Using Image Processing Techniques

The results of Canny Edging of the input
BAU-Kul samples (Fig. 5) are in fact, binary
images in which the white pixels closely
approximate the true edges of the original
BAU-Kul product. However, some white
dots were also identified in the middle of
the image which apparently occurred due to
the natural lights reflecting from the surface
of the BAU-Kul sample when images were
captured using mobile devices. The red color
contours are obtained on the original BAU-
Kul images (Fig. 6), which provides the line
segments corresponding to the shapes of the
objects in the images. If the lightings during
images capturing are properly made, the
shadow of the fruits on the surface could be
minimized, and the contour of BAU-Kul will
be more accurate. This manuscript however,
present a simple technique in which images
captured from normal mobile devices can
be used for such kinds of operation. In case
of commercial operations however, proper
lighting arrangements can significantly
improve the accuracy of edge detection.

Contour for Bau-Kul sample-1

Contour for Bau-Kul sample-2

Fig. 6. Contour images for BAU Kul samples.

Perimeter Quantification
The algorithm was also employed in computing
the perimeter of all the six BAU-Kul samples
as shown in Table 3. The obtained pixelated
values were transformed into linear lengths in
centimeter. In order for accurate calculation, a
standard square of known dimensions (4 cm
× 4 cm) were used for calibration purpose in
each case. In addition, the actual lengths of
the samples around their exact photographed
edges were measured using a graduated scale
with ±0.1 cm accuracy.

The difference between the measured and the
calculated values were termed and expressed
as % errors. As can be seen from Table 3, the
algorithm employed under this manuscript
was able to predict the perimeters of the BAU-
Kul samples with considerable accuracy with
errors ranging from 6.33 to 10.13%. The
calculated lengths of the six samples ranged
from 17.9 cm to 20.20 cm with an average

M. M. Rahman and M. M. H. Oliver 23

(±SD) of 19.29(±1.02) cm. The measured
lengths on the other hand, varied from 16.2
cm to 19.1 cm with an average (±SD) of
17.75(±1.3) cm. Consequently, the average
error was limited to only 7.98% (±1.02). This
indicates the fact that the algorithms employed

in this manuscript can be used for determining
the BAU-Kul samples (Table 3) with
considerable accuracy (92.02%) using images
from mobile devices. If image acquisition can
be done in a properly designed chamber, the
accuracy can be substantially increased.

Table 3. Evaluation of contour perimeter for selected BAU-Kul samples
Samples Calculated Perimeter (cm) Measured Perimeter (cm) % Error

S1

17.90 16.20 9.49

S2

20.20 18.90 6.46

S3

19.36 17.40 10.13

S4

20.39 19.10 6.33

S5

19.67 18.00 8.49

S6

18.22 16.90 7.22

24 Detection and Contouring of BAU-Kul Using Image Processing Techniques

Conclusions
Image processing techniques are used to
measure the qualities of fruits based on
color space model, Thresholding, edge and
contour detection methods. In this research,
Thresholding segmentation, edge and contour
detection were obtained from the color images
of BAU-Kul by using Python-OpenCV
platform. The edge and contour of BAU-
Kul images were found to be good enough
to be used for operational purposes. The
contours will however, be more accurate if
the suitable lighting conditions are employed
in order to minimize the shadow of images
on the background surfaces. Nonetheless,
the algorithms employed in this manuscript
can be used for determining the BAU-
Kul samples with considerable accuracy
(92.02%). The information generated from
this research will be helpful for commercial
grading and sorting facilities thriving for
automation. This would ultimately help the
growers get better price according to the
shape and sizes of BAU-Kul.

References
Abubakar, F. M. 2013. Study of Image segmentation

using thresholding technique on a noisy image.
Int. J. Sci. Res. 2(1): 49-51.

Banot, S. and P. M. Mahajan. 2016. A fruit
detecting and grading system based on
image processing-review. Int. J. Innov. Res.
Electric. Electron. Instr. Contr. Eng. 4(1):
47-52.

Blasco, J., N. Aleixos, S. Cubero, J. Gómez-
Sanchís and E. Moltó. 2009. Automatic
sorting of satsuma (citrusunshiu)
segments using computer vision and
morphological features. Comput.
Electron. Agric. 66(1): 1-8.

Canny, J. 1986. A computational approach to
edge detection. IEEE Trans. Pattern Analys.
Mach. Intel. 8(6): 679-698.

Choudhary, P., R. Khandekar, A. Borkar and
P. Chotaliya. 2107. Image processing
algorithm for fruit identification. Int. Res. J.
Eng. Technol. 4(3): 2741-2743.

Dash, S. S., P. C. B. Naidu, R. Bayindir and S.
Das. 2017. Artificial intelligence and
evolutionary computations in engineering
systems. Proc. ICAIECES. Springer Nature
Singapore, 468 P.

Deng, L., H. Du and Z. Han. 2017. A carrot sorting
system using machine vision technique.
Appl. Eng. Agric. 33(2): 149-156.

Deulkar, S. S. and S. S. Barve. 2018. An automated
tomato quality grading using clustering
based support vector machine. 3rd Int.
Conf. Communic. Electron. Syst. Pp. 1128-
1133.

Devi, T. G., P. Neelamegam and S. Sudha. 2017.
Image processing system for automatic
segmention and yield prediction of fruits
using open CV. Int. Conf. Curr. Trend. in
Comp. Electric. Electron. Communic. Pp.
758-762.

Efford, N. 2000. Segmentation. Pp. 250-270.
Digital Image Processing: A Practical
Introduction Using Java. Pearson education,
England.

Feng, G. R. and C. Qixin. 2004. Study on color
image processing based intelligent fruit
sorting system, Fifth World Congress on
Intel. Contr. Auto. 6 (6): 4802-4805.

Kanimozhi, B. and R. Malliga. 2017. Classification
of ripe or unripe orange fruits using the
color coding technique. Asian J. Appl. Sci.
Technol. 1(3): 43-47.

Koirala, A., K. B. Walsh, Z. Wang, and C.
McCarthy. 2019. Deep learning for real-
time fruit detection and orchard fruit load

M. M. Rahman and M. M. H. Oliver 25

estimation: Benchmarking of mango
YOLO. Precis. Agric. 20(6): 1107-1135.

KGF. 2014. Annual Report (Jan-Dec, 2014),
Krishi Gobeshona Foundation, 26 P.

Lin, C., C. H. Su, H. S. Huang and K. C. Fan. 2011.
Colour image segmentation using relative
values of RGB in various illumination
circumstances. Int. J. Com. 5(2): 252-261.

Mahendran, R., G. C. Jayashree and K.
Alagusundaram. 2012. Application of
computer vision technique on sorting and
grading of fruits and vegetables. J. Food
Process Technol. S1-001.

Minichino, J. and J. Howse. 2015. Learning
OpenCV 3 computer vision with python. 2nd
Edition. Packt publishing ltd. livery place,
Birmingham, UK. 55 P.

Muthukrishnan, R. and M. Radha. 2011.
Edge detection techniques for image
segmentation. Int. J. Comp. Sci. Info.
Technol. 3(6): 259-267.

Nandi, C. S., B. Tudu and C. Koley. 2016. A
machine vision technique for grading of
harvested mangoes based on maturity and
quality. IEEE Sensors J. 16(16): 6387-
6396.

Phakade, S. V., D. Flora, H. Malashree and J.
Rashmi. 2014. Automatic fruit defect
detection using HSV and RGB color
space model. Int. J. Innov. Res. Comp. Sci.
Technol. 2(3): 67-73.

Poorani, M., T. Prathiba and G. Ravindran. 2013.
Integrated feature extraction for image
retrieval. Int. J. Comp. Sci. Mob. Comp.
2(2): 28-35.

Rahman, M. M., and A. Islam. 2013. Adaptation
technologies in practice and future potentials
in Bangladesh. Climate Change Adaptation
Actions in Bangladesh. Springer, Tokyo.
Pp. 305-330.

Rajani, S. and M. N. Veena. 2019. Medicinal
plants segmentation using thresholding
and edge based techniques. Int. J. Innov.
Technol. Explor. Eng. 8(6S4): 71-76.

Sahu, D. and R. M. Potdar. 2017. Defect
identification and maturity detection of
mango fruits using image analysis. Americ.
J. Art. Intel. 1(1): 5-14.

Senthilkumaran, N. and S. Vaithegi. 2016.
Image segmentation by using thresholding
techniques for medical images. Comp. Sci.
Eng.: An Int. J. 6(1): 1-13.

Septiarini, A., H. Hamdani, H. R. Hatta and K.
Anwar. 2019. Automatic image segmentation
of oil palm fruits by applying the contour-
based approach. Scientia Hort. 261: 1-7.

Shapiro, L. G. and C. S. George. 2002. Computer
Vision. New jersey, Prentice hall.
ISBN 0-13-030796-3.

Uddin, M. B. and I. Hussain. 2012. Development of
diversified technology for jujube (Ziziphus
jujuba L) processing and preservation.
World J. Dairy Food Sci. 7(1): 74-78.

Yonekura, T., A. Iwamoto, H. Fujita, and M.
Sugiyama. 2019. Mathematical model
studies of the comprehensive generation
of major and minor phyllotactic patterns in
plants with a predominant focus on orixate
phyllotaxis. PLoS Comp. Biol. 15(6),
e1007044.

