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Abstract: Different modeling concepts, a simple (black-box) to a fully distributed modeling (white-box), were 

used to develop a rainfall-runoff model based on the watershed characteristics to estimate runoff at the 

watershed outlet. A conceptual (grey-box) model is usually a balance between the black-box and white-box 

model. In this study, three grey-box models were developed by varying model structures for a karst watershed. 

The performance of the grey-box models was evaluated and compared with a semi-distributed type (white-box) 

model that was developed using the Soil and Water Assessment Tool in a previous study. The evaluation was 

carried out using goodness-of-fit statistics and extreme flow analysis using WETSPRO (Water Engineering 

Time Series Processing tool). Nash-Sutcliffe efficiencies (NSE) of the grey-box models were from 0.39 to 0.77 

in the calibration period and from 0.30 to 0.61 in the validation period. However, the white-box model 

performed better in terms of NSE but has a higher bias. The best grey-box model performed better in simulating 

extreme flow, whereas the white-box (SWAT) model adequately simulated daily flows. 
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1. Introduction  

Rainfall-runoff models are often used to predict the behavior of a natural hydrological system (Abdollahi et al., 

2017; Amin et al., 2017; Cislaghi et al., 2020). In reality, the natural system is very complex and consists of 

many components and processes. A model is a simplified representation of the actual system. The complexity of 

a model varies from a very simple to a more elaborate representation of the main processes of the system. Based 

on the degree of complexity, models are classified as (i) detailed physically-based models (white-box), (ii) 

conceptual models (grey-box), and (iii) empirical models (black-box) (Beck et al., 1990; Willems, 2015). 

White-box models are considered the most complex, whereas black-box models are the simplest ones.  

In white-box models, physical processes are represented using many equations to establish a relation between 

the input and output of the system. The prediction of a white-box model is relatively accurate and reliable, but it 

requires a powerful computing system and much time to simulate the results. It also requires a large amount of 

information and field data about the system to represent the processes accurately (Biftu & Gan, 2001; Chen et 

al., 2016; Praskievicz & Chang, 2009; Wang et al., 2010; Yang et al., 2014). On the other hand, black-box 

models do not represent physical processes. In black-box models, a relation is established between the input and 

output of the model using observed input and output data. As black-box models do not include any physical 

process, they often provide inaccurate results especially when used for extrapolation or used for a dynamic 

system (Vaze et al., 2011; Willems, 2015).  
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A grey-box model is a balance between the detailed physically-based model and the empirical model. In grey-

box models, the main physical processes are represented in a lumped way by a few processes. Performances of a 

grey-box model can be improved by calibration once the main processes are included in the model (Jaiswal et 

al., 2020; Kumar et al., 2015; Willems, 2015). In this modeling, a systematic approach is applied where the 

whole system is analyzed as a unit rather than looking deeply into its components individually.  

The complexity of a model depends on the purpose of its use, such as designing a water distribution project, 

forecasting the flood of a watershed, and prediction of frequency and amount of low flow (Eheart & Tornil, 

1999; Smakhtin, 2001). Modeling for a flood management project mainly deals with the peak flow of a stream 

(Hsu & Wei, 2007; Khan & Valeo, 2016; Sudheer et al., 2003). In contrast, a detailed simulation of the 

hydrological processes in a watershed is needed for predicting the transport of different pollutants (Amin et al., 

2017; Collick et al., 2015), sediment (James et al., 2010; Kizhisseri et al., 2006), and for evaluating a farming 

system (Amin et al., 2018). Therefore, a model's performance should be evaluated using multi-criteria analysis 

to understand its applicability. The Water Engineering Time Series Processing tool (WETSPRO) (Willems, 

2004a, 2009) is used to evaluate a rainfall-runoff model. It can conduct flow filtering (peak and low flow) using 

a numeric digital filter. Nearly independent peaks and low flow values can be extracted using independent 

variables by this tool. Hence, it provides information about the model's performance to simulate extreme flows.  

Developing a rainfall-runoff model for a karst watershed is a difficult process due to the complicated natural 

features of such watershed (Amin et al., 2017). The presence of underground fractures in the bedrock and 

preferential flow paths enhance groundwater recharge in karst watersheds (Hartmann et al., 2015). Thus, the 

infiltration capacity is high, which limits surface runoff and reduces actual evapotranspiration during wet 

conditions (Malard et al., 2016). In addition, the network of sub-surface channels within karst aquifers increases 

the speed of groundwater flow (Fulton et al., 2005) compared to water movement through non-karst aquifers. 

Moreover, the area outside the topo-graphic watershed boundary can discharge inside the basin and vice versa 

due to underground fractures. All these factors make it difficult to develop an efficient model of such a 

watershed. Therefore, a fully distributed or semi-distributed type model such as the Soil and Water Assessment 

Tool ‘SWAT’ (Arnold et al., 1998) is often used for detailed rainfall-runoff simulation in a karst watershed 

(Collick et al., 2015; Amin et al., 2017). However, the performance of the grey-box model for a karst watershed 

should be evaluated to understand its suitability and limitation. In addition, a comparison of the performance of 

a grey-box with a white-box model can provide information about its suitability in a complicated watershed. 

In this context, the performance of a grey-box model was evaluated based on multi-criteria analysis to 

understand its applicability better. In this study, a rainfall-runoff grey-box model was developed using the 

system approach concept for the karst watershed, and its performance was compared with the white box model 

(semi-distributed SWAT model) in terms of statistical-goodness of fit and extreme flow analysis.  

 

2. Materials and Methods  

2.1.  Watershed overview 

Spring Creek watershed in Center County, Pennsylvania, USA, was selected for this study (Figure 1). 

Geographically, this watershed covers 370 km2 area situated between 40°40'−40°59'N and 77°38'–78°00'W in 

the Appalachian Ridge and Valley physiographic province of the upper Chesapeake Bay watershed. The forth 

order stream Spring Creek discharges into Bald Eagle Creek. There are three gauging stations of the United 

States Geological Survey (USGS) in the watershed. The average elevation of the watershed is approximately 

370 m above mean sea level (amsl). The study area has a temperate climate with hot, humid summers and cold 

winters. The mean annual temperature in the study area is 10.1°C, the average annual precipitation is 1060 mm, 

and annual actual evapotranspiration ranged 268–768 mm. 
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Figure 1. The location of Spring Creek watershed (Source: United States Geological Survey and 

http://www.chesapeakebay.net). 

 

The Spring Creek watershed has Karst geologic formations. Taylor (1997) estimated based on the observed data 

from 1968 to 1994 that 33–60% of precipitation was lost through actual evapotranspiration, and 33–58% joined 

the stream, 9–16% of stream flow originated from direct runoff, whereas base-flow contribution was 87–91%. 

In the Spring Creek watershed, 34% of the land was used for agriculture, whereas 23% and 43% were developed 

and forests, respectively.  The impervious area in the watershed increased from 3.1% in 1938 to 13.3 in 2006 

(Brooks et al., 2011). Watershed management practices have been applied in highly impervious areas to 

minimize runoff quantity (Amin et al., 2017). 

 

2.2.  Data collection and evaluation 

2.2.1. Data sources 

The daily discharge, precipitation, maximum daily temperature, minimum daily temperature, and relative 

humidity of the watershed for 12 years (2002 to 2013) were used in this study to develop the grey-box model. 

The same data set was used to develop the white box model using SWAT in a previous study (Amin et al., 

2017). The SWAT-simulated daily discharge was used to compare with the grey-box model output. Observed 

daily discharge data were collected from the USGS gauging station for the Spring Creek watershed 

(http://waterdata.usgs.gov/pa/nwis/rt). Weather data was collected from the Chesapeake Community Modeling 

Program (http://ches.communitymodeling.org/) and the Pennsylvania State Climatologist 

(http://climate.psu.edu/).  

 

2.2.2. Daily discharge data 

The discharge data at the outlet of the watershed was used in the current study. The runoff and precipitation data 

were shown in Figure 2.  It was observed that there were frequent peak flows and some long low flow periods as 

well.  
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Figure 2. Plotting of time series of observed runoff (discharge) and rainfall (precipitation). 

 
2.2.3. Daily precipitation data 

The collected precipitation data was recorded in the station named "State College PA US" which is situated 

inside the watershed. It was assumed that the collected precipitation data is the average precipitation that was 

uniformly distributed over the watershed. The study area is in the temperate region, so the precipitation data 

contain rainfall and snowfall. Figure 2 illustrates that precipitation occurred around the year, but there was high 

precipitation variability between July and September.  

 

2.2.4. Daily temperature data 

The lowest temperature observed in January–February starts increasing from March until it reaches a peak in 

July. Then, the temperature starts decreasing for the rest of the months (Figure 3). The daily minimum 

temperature mostly remains below freezing between December and March, and snowfall occurs mainly during 

this below-freezing temperature period.  

 

 
 

Figure 3. Monthly maximum (Tmax) (a) and minimum (Tmin) (b) temperature variation over the year in 

the study area (dC=degree Celsius). 

 
2.2.5. Water balance of the watershed  

The water balance of the watershed was checked using observed precipitation, observed runoff (stream flow), 

and the SWAT simulated evapotranspiration data. The cumulative volume of precipitation, runoff, and 

evapotranspiration was calculated for 12 years and plotted in Figure 4. The water balance of the watershed can 

be expressed using Eq. 1. 

 

 recipitation    unoff +  vapotranspiration +  oundwater outflow -  roundwater inflow (1) 
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Figure 4. Variation of cumulative runoff, precipitation, evapotranspiration, and loss (equation (2)) in the 

water balance of Spring Creek watershed for the study period. 

 
For long-term analysis, it is usually assumed that groundwater inflow is equal to groundwater outflow. As 

discussed in the study area section, the groundwater basin is 22% larger than the surface watershed, so there 

might be extra groundwater inflow in the water balance. To check groundwater contribution in water balance, 

the loss volume was calculated by subtracting runoff from precipitation.  

  oss    recipitation -  unoff (2) 

 

The calculated loss volume was then plotted together with cumulative precipitation, runoff, and 

evapotranspiration in Figure 4. Figure 4 shows that evapotranspiration was higher than the loss volume, which 

indicates that there was groundwater inflow contribution from outside the watershed. So, the water balance 

equation was presented as follows: 

  recipitation    unoff +  oss (3) 

 

  oss    vapotranspiration +  oundwater outflow -  roundwater inflow (4) 

 

It was also observed that runoff was equal to 54% of the precipitation that is the average runoff coefficient 

(0.54).   

 

2.3.  Grey-box model construction  

The main objective of this study was to build a simple but acceptable model, so a grey-box model was 

constructed by including different processes in a lumped way. At first, the water balance equation was 

developed, and the relationships between different hydrological processes were analyzed. Then, a simple 

conceptual model was constructed, and the model's structure was changed until the model provides an 

acceptable result. The different steps followed to build the grey-box models are described in the following 

subsections. 

 

2.3.1. Model-1 

At first, a simple model structure was used. The precipitation-runoff model was considered as a rainfall-runoff 

model; snow melting or snowpack was not used.  The daily net rainfall was calculated by multiplying the loss 

factor with the daily precipitation.   

  aily net rainfall ( net)    aily precipitation* oss factor (5) 

 

The loss factor (Lf) was calibrated by comparing the cumulative volume of observed discharge and net rainfall. 

The loss factor value was selected for which the cumulative volume of the observed discharge almost equal to 

the cumulative volume of net rainfall. Once the daily net rainfall (Pnet) was obtained, it was divided into three 

runoff components: overland flow, interflow, and baseflow. Initially, the values of overland flow portion (WOF), 

interflow portion (WIF), and baseflow portion (WBF) were derived by analyzing the observed discharge in 



Asian Australas. J. Biosci. Biotechnol. 2021, 6 (1)    
 

 

31 

WETSPRO (Willems, 2004a). Hence, the input for overland flow, interflow, and baseflow was calculated using 

the following equation: 

 q
in  

   net   W   (6) 

 q
in  

   net   W   (7) 

 q
in  

   net   W   (8) 

 

Here, qinOF, qinIF and qinBF are the input for overland flow, interflow, and baseflow, respectively. 
 

From the analysis of observed data in WETSPRO, it was found that the portion of base flow (WBF) is around 

0.65 of total flow and the portion of quick flow (interflow + overland flow) is 0.35 of total flow. It was also 

observed that the portion of interflow (0.25) is higher than the overland flow (0.10). In case of heavy rainfall, 

the portion of overland flow should increase; hence, the flow portion between interflow and overland flow was 

switched based on critical net precipitation Pc net. The value of Pc net was adjusted during calibration.  

The input-output relation of the water system can be described using a linear reservoir model (Willems, 2004b). 

The linear reservoir model was used to represent the input-output relation of three runoff components. It was 

assumed that three reservoirs are in the parallel position; that is, the runoff component contributes to runoff 

separately. Equation (9) was used to calculate the outflow of each runoff component, i.e., the overland outflow 

(qoutOF), interflow outflow (qoutIF), and baseflow outflow (qoutBF) from the input of overland flow, interflow, and 

baseflow, respectively.  

 
q
out

(t)   exp (-
 

 
) q

out
(t- )+( -exp (-

 

 
)) q

in
(t) 

(9) 

 

Here,  qout(t) is the outflow at time t (m3/s); qout (t-1) is the outflow at time t-1 (m3/s); qin(t) is the inflow at time t 

(m3/s); k is the flow recession constant. The initial value of the recession constant of overland flow (kOF), 

interflow (kIF), and baseflow (kBF) was determined by analyzing the observed flow in WETSPRO.  

Finally, the model outflow was obtained by adding the outflow of overland flow, interflow, and baseflow.  

  
out

(t) q
out  

+q
out  

+q
out  

 (10) 

 

where Qout(t) is the model outflow which is runoff at time t.  

 

2.3.2. Model-2  

In Model-1, the loss was the same throughout the year. However, the idea of calculating net rainfall as a 

function of daily average temperature can be used in this study. So, a new loss equation (Eq. 11) was introduced 

in the second approach.  

 
  {

sTavg  if Tavg 0

0  
} 

(11) 

 

Here, L is the loss (mm); s is the linear regression slope (constant).  

Therefore, the net rainfall equation was also changed to Eq. 12. 

  net Tavg    aily precipitation -   (12) 

 

The rest of the model structure was the same as the first approach for Model-1. However, all the parameters 

were calibrated and optimized for this new model. 

 

2.3.3. Model-3 

The inclusion of the snow melting process could improve the model performance. Therefore, the snowpack and 

snow melting process were included in the third approach to improve the model performance. At first, it was 

decided whether precipitation is rainfall or snowfall based on a critical temperature (Tcsnow). The critical 

temperature is the average temperature of the day for which the precipitation will be considered as snowfall. 

This parameter was adjusted during calibration. However, in reality, the form of precipitation depends on many 

meteorological factors. Snow melting rate was calculated using an equation adapted from Moussav et al. (1989). 

The snow melting equation is as follows: 

 
  {

 (T*
 ax-Tbase) if T*

 ax Tbase

0 if T*
 ax Tbase

} 
(13) 
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Here, M is the melting rate (mm day-1); T*max is the daily maximum temperature over freezing point (°C); Tbase 

is the base temperature (°C); C is the melting factor (mm day-1 °C-1). The optimum value of melting factor, C 

and base temperature, Tbase was selected during calibration.  

The snowpack process was added in this model to accumulate snowfall in winter. The daily snowpack amount 

was calculated using the following equation.  

 Spac t  Spac t- -  at- 
+ snowt

 (14) 

 

Here, Spack t and Spack t-1 is the snowpack amount in mm in day t and t-1, respectively, Psnow t is the snow fall in 

mm in day t, and Ma t-1 is the actual melting of snow in mm in day t-1. The actual melting was calculated using 

the following equation: 

 

 at
 {

 t if Spac t  t

Spac t if Spac t  t

0 if Spac t 0

} 

(15) 

 

where Ma t is the actual melting (mm) in day t, Mt is the snow melting potential of the day t and       
 is the 

amount of accumulated snow up to tth day.   

The rest of the model structure was the same as in the previous approaches. However, all the parameters were 

calibrated again for this new approach. A diagram of the model is shown in Figure 5.  

 
 

Figure 5. Grey-box model diagram of Model-3. 
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2.3.4. Grey-box model calibration 

The model was calibrated for each parameter from six years of daily data (2002 to 2007), and the loss factor was 

calibrated based on water balance. The water balance was checked by comparing the cumulative net rainfall 

volume with the cumulative observed outflow. The other parameters were calibrated by trial and error while the 

performance of the model was observed simultaneously. The excel solver was also used to optimize the 

parameters where the objective function was to maximize the Nash–Sutcliffe efficiency (NSE) (Eq. 16).  After 

automatic optimization by the solver, fine-tuning was done manually to minimize the overfitting.   

 

2.4.  White-box model  

A semi-distributed model of this watershed was developed using Topo-SWAT in a previous study (Amin et al., 

2017). The simulated runoff of this model was taken as an output of a white-box model. This model was 

devolved using different types of weather, soil attributes, and terrain data. Weather and streamflow data of 

several stations were used to calibrate and validate the model. Ten-meter resolution of elevation data was used 

to define the terrain of the watershed. In addition, a spatial combination of the FAO-UNESCO Digital Soil Map 

of the World (FAO, 2007) and topographically derived wetness classes were used in this model. Hence, this 

semi-distributed model was developed using more data (particularly spatially distributed data) than the grey box 

model.  

 

2.5.  Model performance evaluation 

The performance of the grey-box models was evaluated by both visual inspection and statistical goodness-of-fit. 

Then, the best grey-box model was compared with the white-box model (SWAT model). The models were 

calibrated using the observed data for the period of 2002 to 2007 and validated for the period of 2008 to 2013.  

The statistical goodness-of-fit methods were carried out by using the Nash–Sutcliffe efficiency (NSE) (Eq. 16) 

and percent bias (PBIAS) (Eq. 17) (Moriasi et al., 2007). In addition, the coefficient of determination (R2) was 

used to assess the precision of the simulated values with respect to the observed. 
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where n is the number of observations, and Qoi and Qsi are the ith observed and simulated runoff, respectively.  

 

2.6.  Extreme flow analysis  

The Water Engineering Time Series Processing (WETSPRO) (Willems, 2004a) tool was used for extreme flow 

analysis. The observed flow, grey-box model output, and white-box model output were plugged into the 

WETSPRO tool to evaluate the model performance in terms of extreme flow simulation. The flow was filtered 

using a numeric digital filter of WETSPRO to extract independent peak-over-threshold (POT) values. Three 

parameters were needed for POT analysis. Those parameters are (i) maximum fraction of base flow in the peak 

flow (f), (ii) independence period (kp) between two peaks, and (iii) minimum peak height (qlim). The kp can be 

taken equal to the recession constant of quick flow or higher.  The f can be taken as the upper limit of the base 

flow fraction in the peak flow. The upper limit of small noise peaks, which needs to be avoided to be selected as 

POTs, can be used as qlim. The parameters used in the POT section are shown in Table 1. Those parameter 

values were estimated by analyzing observed flow. At first, the observed time series were filtered into three 

components of baseflow, interflow, and overland flow. Then, independent peak flow and low flow were 

calculated through POT selection. The same procedure was also applied to the output of the models. 

 

Table 1. Parameters used in POT selection using the method independent of base flow. 

 
 Parameters  Peak flow period Low flow period 

Maximum fraction of base flow in the peak flow (f) [-]: 0.4 0.3 

Independence period (kp) [day]: 30 130 

Minimum peak height (qlim) [m3/s]: 1 1 
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High flow values receive higher weights in statistical goodness of fit calculation. The Box-Cox (BC) 

transformation of values can minimize the effect of such consequences. Therefore, POT values were 

transformed using Eq. 18. 

 
   ( ) 

  - 

 
 

(18) 

 

The value of parameter   ranges from 0 to 1, and it should be adjusted to reach homoscedasticity in the 

residuals. In this study, homoscedasticity was obtained for   = 0.25 for both peak and low flows.  

 

2.7.  Statistical test 

The statistical hypothesis test of the difference between simulated and observed extreme flows was conducted 

using the Wilcoxon signed-rank test (Rey & Neuhäuser, 2011), a non-parametric type test. The non-parametric 

test was performed because the extreme flows were not normally distributed. Pair-wise Wilcoxon signed-rank 

test was performed using the function "wilcox.test" of R statistical analysis software (R Core Team, 2021).  

 

3. Results and Discussion 

3.1.  Calibrated parameter of grey-box model  

The calibrated parameters of different models are shown in Table 2. Model-1 and Model-2 had the same number 

of parameters, while Model-3 had the maximum number of parameters. The value of the parameters related to 

flow portion (e.g., overland flow, base flow, inter-flow) were the same in both Model-2 and Model-3. The 

parameters related to net-input calculation were changed due to the changes in the model structures. 

 

Table 2. List of the parameters used in the different models with calibrated values. 

 
Parameter name  Unit Model-1 Model-2 Model-3 

Loss factor, Lf - 0.55   

Slope parameter of loss, S -  0.6 0.56 

The critical temperature for snow fall, Tc snow °C   1 

Base temperature, Tbase °C   0 

Melting factor, C  mm day-1 °C-1   0.6 

Critical net precipitation, Pc net  m3/s 360 360 360 

Overland flow portion, WBF - 0.08 0.08 0.08 

Overland flow recession constant, kOF days 1 1 1 

Interflow Portion, WBF - 0.22 0.35 0.35 

Interflow recession constant, kIF days 20 30 30 

Base flow portion, WBF - 0.7 0.57 0.57 

Base flow recession constant, kBF days 170 170 170 

Total number of parameters  8 8 11 

 

3.2.  Model performance evaluation  

3.2.1. Simulated and observed outflow 

The observed outflow and simulated outflow of different models are shown in Figure 6 for both calibration and 

validation periods. It was observed that Model-1 was unable to simulate peak flow and low flow. A fixed loss 

factor was used in Model-1; hence, the simulated outflow of model-1 did not have seasonal variation. The 

simulated outflow values of Model-2 and Model-3 were almost similar except in winter (2/9/2008) when 

Model-2 overestimated the flow. This is because Model-2 did not have the snowfall accounting process. Model-

3 successfully simulated small peaks and low flows. However, it underestimated some peak flows. On the other 

hand, the white-box (SWAT) model was able to simulate high and medium peaks. However, it overestimated 

some of the peak values. Seasonal variation was strongly visible in the white box model than the grey box 

model. This means that the white-box model was suitable for simulating the daily runoff process.  
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Figure 6. Observed and simulated runoff of different models in calibration and validation periods. 

 
3.2.2. Statistical goodness-of-fit  

The performance indicators of the models based on statistical goodness of fit are shown in Table 3. Model-3 had 

the highest NSE and R2 in both calibration and validation periods compare to other grey-box models (Table 3). 

Model-3 also had the lowest bias in the validation period. Model-2 had similar goodness-of-fit statistics to 

Model-3. However, Model-1 performed poorly with NSE below 0.5. Hence, Model-3 was chosen as a grey-box 

model for further analysis in the study.  

The white-box model performed better than the grey-box models regarding NSE and R2 in both calibration and 

validation periods. However, PBIAS was higher in the white-box model than the grey-box models. It was also 

observed that the PBIAS of the white-box model was higher in both the validation and calibration periods than 

the grey-box models. The positive values of PBIAS means that it overestimated the runoff. Although the white-

box model had higher NSE than the grey box model, the NSE values of both models were within the acceptable 

range (>0.50) (Moriasi et al., 2007).  
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Table 3. Model performance evaluation based on statistical goodness-of-fit methods. 

 
Model Calibration (2002-2007)  Validation (2008-2013) 

NSE R
2
 PBIAS  NSE R

2
 PBIAS 

Model-1 (grey-box) 0.39 0.41 1.71  0.30 0.30 -3.66 

Model-2 (grey-box) 0.70 0.70 1.36  0.55 0.56 -2.12 

Model-3 (grey-box)* 0.77 0.77 2.66  0.61 0.61 -1.15 

SWAT (white-box) 0.78 0.80 5.62  0.69 0.76 8.38 
*Selected grey-box model 

 

3.2.3. Peak flow analysis  

The model performance concerning separated peak flow is shown in Figure 7. It was observed that both models 

were able to simulate high flow up to 30 m3/s. However, for the flow higher than 30 m3/s or a return period of 

more than two years, the grey-box model (Model-3) slightly underestimated the flow. However, a very high 

flow was well simulated by the grey-box model. Overall, there was no significant difference between the grey-

box model predictions and the observed peak values (p-value = 0.11). On the other hand, the white-box model's 

peak values were significantly different from the observed peaks (p-value= 9.12×10-08) and the peaks of the 

grey-box model (p-value = 0.0027). In the scatter plot of peak flows after the Box-Cox transformation (Figure 

7b), the grey-box model underestimated the peak flows as the mean deviation was lower than the bisector. The 

plotting points are more scattered for the white-box model than the grey-box model. This means that the 

prediction uncertainty for the white-box model was higher.  

 
 

Figure 7. Graphical comparison of observed and simulated peak flows (a) and scatter plot of peak flows 

after the Box-Cox transformation (b). 

 
3.2.4. Low flow analysis  

Both models underestimated the low flows (Figure 8). The observed values of low flow were significantly 

different from the predicted values for both the grey-box (p-value = 0.00031) and white-box models (p-value = 

3.05×10-05). The mean deviation was lower than the bisector (Figure 8b), which indicates that the model 

underestimated the low flow. The degree of under-estimation was higher for the white-box model as most of the 

scatter points were below the bisector line and out of the standard deviation line. The performance of the grey-

box model was better in low flow simulation.  
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Figure 8. Graphical comparison of observed and simulated low flows (a) and scatter plot of low flows 

after the Box-Cox transformation (b). 

 
4. Conclusions  

Multiple rainfall-runoff conceptual (grey-box) models were developed using different model structures for a 

karst watershed. The performance of the selected grey-box model was compared with a semi-distributed SWAT 

(white-box) model. The performance of the models was evaluated in terms of goodness-of-fit statistics and 

extreme flow analysis. According to overall goodness-of-fit, the white-box model performed better with the 

highest NSE and R2; however, the best grey-box model was also acceptable as NSE was higher than 0.60 in both 

calibration and validation periods. The white-box model can simulate seasonal variation better, whereas the 

grey-box model simulated extreme flow (peak and low flow) more efficiently than its counterpart did. 

Therefore, we can conclude that a conceptual (grey-box) model can be used for extreme flow analysis, whereas 

a semi-distributed model is suitable for daily runoff simulation.  
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