CASE REPORTS

Stenting in Coarctation of the Aorta

SYED ALI AHSAN1, SYED SAWKAT HOSSAIN2, MD. SAIFULLAH PATWARY1, MD. ABU SALIM1, AYESHA RAFIQUE CHOWDHURY1, KMHS SIRAJUL HAQUE1

1Department of Cardiology, BSMMU, Dhaka; 2Port Huron Vascular Clinic, PC, Michigan, USA.

Address for correspondence: Dr. Syed Ali Ahsan, Associate Professor, Interventional Cardiology, Bangabandhu Sheikh Mujib Medical University, Dhaka. e-mail: draliahsan@yahoo.com

Abstract:
Narrowing of the aorta most commonly occurs in the region where the ductus arteriosus joins the aorta, i.e. at the isthmus just below the origin of the left subclavian artery. It is associated with other abnormalities, of which the most frequent are bicuspid aortic valve and ‘berry’ aneurysms of the cerebral circulation. Acquired coarctation of the aorta is rare but may follow trauma or occur as a complication of a progressive arteritis, Takayasu’s disease.

A 21 years old young lady noted intermittent headache and occasionally weakness or cramps in the legs on walking from her early childhood. On examination her blood pressure in the upper limb 210 / 120 mm Hg, in lower limb was 100 / 60 mm Hg. There was radio-femoral delay and femoral pulse was weak. A systolic murmur is heard posteriorly. Radiological examination showed changes in the contour of the aorta and rib notching. ECG shows left ventricular hypertrophy. Echocardiography showed only concentric hypertrophy of LV. CT angiogram revealed coarctation of the aorta present with development of collaterals. Inspite of getting 3 different antihypertensive drugs her BP was uncontrolled. In our hospital her coarctation of the aorta was corrected by by endovascular stenting on the coarctation of the aorta. 5F, 7F & then 9F sheath, straight & J tipped terumo & J tip taflon coated 300 cm long wire was used. Predilatation was done by ballon used 3x10 mm over 0.34" J tip terumo wire @ 10 atm. Post dilatation was done by ballon used 7x20 mm @ 4 atm. Wall stent (Endoprosthesis) 9F was used. 1st Wall stent 14mm x 40mm self expanding and 2nd Wall stent 16mm x 60 mm, upper part covered the mouth of left subclavian artery. Result of stenting was good and procedure was uneventful.

Introduction:
Narrowing of the aorta most commonly occurs in the region where the ductus arteriosus joins the aorta, i.e. at the isthmus just below the origin of the left subclavian artery.1

The condition is twice as common in males as in females and occurs in 1 in 4000 children. It is associated with other abnormalities, of which the most frequent are bicuspid aortic valve and ‘berry’ aneurysms of the cerebral circulation.

Acquired coarctation of the aorta is rare but may follow trauma or occur as a complication of a progressive arteritis, Takayasu’s disease.1-6

Case report:
A 21 years old young lady noted headache from her early childhood and occasionally weakness or cramps in the legs on walking. On examination the blood pressure is raised in the upper body 210 / 120 mm Hg but low 100 / 60 mm Hg in the legs. The femoral pulses are weak, and delayed in comparison with the radial pulse. A systolic murmur is heard posteriorly.

Radiological examination show changes in the contour of the aorta and notching of the under surfaces of the ribs from collaterals. The ECG show left ventricular hypertrophy.

CT angiogram show coarctation of the aorta present with development of collaterals.

Patients was managed by endovascular stenting on the coarctation of the aorta (Fig.-1). Measuring tape was paste over patients chest. 5F, 7F & then 9F sheath was used. Straight & J tipped terumo & J tip Taflon coated 300 cm long wire was used. Predilatation was done by ballon used 3x10 mm over 0.34" J tip terumo wire @ 10 atm. Post dilatation was done by ballon used 7x20 mm @ 4 atm. Wall stent (Endoprosthesis) 9F was used. 1st Wall stent 14mm x 40mm self expanding and 2nd Wall stent 16mm x 60 mm, upper part covered the mouth of left subclavian artery. Result of stenting was good.
Fig.-1: Aortgrams from a coarctation of the aorta before and after stent implantation. Initial implantation of endovascular stenting in a 21 years old patients with native coarctation of the aorta.
Discussion:
Coarctation of the aorta (CoA) in adolescents and adults can be managed in different ways depending upon the age of presentation, coarctation morphology, whether native or a recurrence following surgery/angioplasty and the local institutional expertise. In the last decade, stenting has been performed in this age group as an alternative to balloon angioplasty and surgery with good intermediate term results.

The rationale for stent implantation is that over dilation of the coarctation segment is unnecessary, thus avoiding major transmural tears, while at the same time the stent struts will split any smaller tears against the aortic wall preventing progressive dissection and aneurysm formation.

The acute elastic recoil of the coarctation segment that contributes to a suboptimal initial result and later recoarctation by balloon alone is prevented by stent implantation. The risk of aneurysm formation, dissection, aortic rupture and death, however, has not been eliminated.

Excessive stretching of a tight coarctation, however, could still lead to aneurysm formation and rupture so graded dilation, allowing for healing before further dilation. The disadvantages of stenting an aortic wall is that it may alter wall compliance, pressure wave propagation and blood pressure. In young patients additional dilatations will be required to keep pace with growth. Neointimal growth causing mild restenosis may also need additional dilatations.

The most commonly used stent is the balloon dilatatable type which allows for further expansion of the stent as child grows or if further dilatation is needed in a critical lesion. Availability of Wall Stents may decrease all these complications and has a special place in developing countries where cost is an important issue and one off treatment may have to be offered.

Our results add to the current limited knowledge about Wall Stents and these may be used as the therapy of choice in adolescents and adults. Long term follow up is needed to address the complications and disadvantages.

References:

