

Effect of plant nutrient and weed management in direct wet seeded boro rice

MAR Sarkar, SK Paul*, U Paul

Department of Agronomy, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh

Abstract

The experiment was conducted at the Farm of Farm Management Division, Bangladesh Agricultural University, Mymensingh during December 2012 to June 2013 to find out the effect of plant nutrient and weed management in direct wet seeded Boro rice. The experiment consisted of six nutrient management viz. Control (No manure- PM and N-P-K-S-Zn), PM at 5 t ha⁻¹, recommended dose of prilled urea (PU) and other inorganic fertilizers (i. e. 120, 60, 40, 10 and 5 kg of N, P₂O₅, K₂O, S and ZnSO₄, respectively), full dose of Urea Super Granules (USG) and other inorganic fertilizers (i. e. 60, 40, 10 and 5 kg of P₂O₅, K₂O, S and ZnSO₄, respectively) 2.7 g USG + PM at 5 t ha⁻¹, 2.7 g USG + PM at 2.5 t ha⁻¹; and three weeding regimes, *viz*. Unweeded control, hand weeding thrice at 20, 35 and 50 days after sowing (DAS); and Panida (Pandimethalin) @ 2.5 1 ha⁻¹ and hand weeding once at 20 DAS. The highest plant height (90.29 cm) was obtained in full dose of USG and other inorganic fertilizers (i. e. 60, 40, 10 and 5 kg of P₂O₅, K₂O, S and ZnSO₄ respectively) and the lowest one (82.42 cm) was from control (No manure- PM and N-P-K-S-Zn). The highest number of effective tillers hill⁻¹ (14.00) was obtained in recommended dose of PU and other inorganic fertilizers (i. e. 120, 60, 40, 10 and 5 kg of N₂, P₂O₅, K₂O, S and ZnSO₄ respectively) whereas the lowest effective tillers hill⁻¹ 9.15 was obtained from control (No manure- PM and N-P-K-S-Zn). The highest number of grains panicle⁻¹ (75.23) was observed in nutrient 2.7 g USG + PM at 5 t ha⁻¹ and the lowest one (59.01) was obtained from PM at 5 t ha⁻¹. The highest plant height (90.57 cm) was obtained in Panida (Pandimethalin) @ 2.5 l ha⁻¹ ¹ and hand weeding once at 20 DAS and lowest plant height (83.98 cm) was obtained in un weeded control. The maximum grain yield (3.71 t ha⁻¹) was obtained from the application of 2.7 g USG + PM at 2.5 t ha⁻¹ and the lowest (1.15 t ha⁻¹) was from control (No manure- PM and N-P-K-S-Zn). The highest grain yield (3.8 t ha⁻¹) was obtained in Panida (Pandimethalin) @ 2.5 l ha⁻¹ and hand weeding once at 20 DAS and the lowest one (1.26 t ha⁻¹) was obtained from unweded control. In case of interaction, the highest number of effective tillers hill⁻¹ (17.00) was obtained in recommended dose of PU and other inorganic fertilizers (i.e. 120, 60, 40, 10 and 5 kg of N, P2O5, K2O, S and ZnSO₄ respectively) with hand weeding thrice at 20, 35 and 50 DAS and the lowest one (7.27) was observed in control (No manure- PM and N-P-K-S-Zn) with no weeding. The highest grain yield (5.29 t ha⁻¹) was obtained in 2.7 g USG + PM at 2.5 t ha⁻¹ with Panida (Pandimethalin) @ 2.5 l ha⁻¹ and hand weeding once at 20 DAS which was statistically identical with 2.7 g USG + PM at 5 t ha⁻¹ and Panida (Pandimethalin) @ 2.5 l ha⁻¹ and hand weeding once at 20 DAS and the lowest grain yield (0.65 t ha^{-1}) was obtained in the interaction of unweeded and unfertilized control (No manure- PM and N-P-K-S-Zn). Boro rice (cv. BRRI dhan28) can be cultivated with 2.7 g USG applied at the centre of the four hills in each alternate row + PM at 2.5 t ha⁻¹ with Panida (Pandimethalin) @ 2.5 l ha⁻¹ and hand weeding once at 20 DAS for appreciable grain yield.

Key words: Plant nutrient, weed management, direct wet seeded, boro rice, USG

Progressive Agriculturists. All rights reserve

*Corresponding Author: skpaull@gmail.com

Introduction

Rice is the staple food crop in Bangladesh and the cropping pattern of the country is predominately rice based and the most dominated cropping pattern is boro -T. Aman rice. Out of the total production in this country about 48%, 45% and 7% come from boro, Aman and Aus crop, respectively (BBS, 2012). In Bangladesh, rice dominates over all other crops and covers 77% of the total cropped area and 93% farmers grow rice (BBS, 2011). The total area and production of rice in Bangladesh are about 11.7 million hectares and 31.88 million tons respectively (BBS, 2011). The increasing rate of population is 1.42% (BBS, 2012) and decreasing rate of agricultural land is 1% per annum (Hussain et al., 2006), which limit the horizontal expansion of rice area. To overcome this situations increment in rice production unit-1 area is the only alternative to bring self-sufficiency in food production. Weeds are the major cause of yield loss in upland rice and its control is labour intensive. The climate as well as the edaphic condition of Bangladesh is favourable for the luxuriant growth of weeds. A reduction in grain yield by 40% was recorded for boro rice in Bangladesh (Haque et al., 2012). The soil fertility status of Bangladesh is gradually declining day by day. Most of the soils of Bangladesh have organic matter less than 1.5% and in many cases it is less than 1% (BARC, 2012). Improper soil management practices and long time intensive use of chemical fertilizers create some fertility problems through soil exhaustion as well as through interactions with other elements causing micronutrients deficiency (Rahman and Main, 1997). In addition, favourable climatic condition for microbial activities throughout the year may be responsible for this. The application of poultry manure to soil is considered as a good management practice in any agricultural production system because of the stimulation of soil microbial growth and activity, subsequent mineralization of plant nutrients, and increased soil fertility and quality (Arancon et al., 2006). Poultry manure may play a vital role in soil fertility management as well as supplying primary,

secondary and micronutrients for crop production. So, emphasis should be given to increase the boro rice yield through the adoption of proper management especially weed control and nutrient management that might be technically effective and feasible, economically viable, socially acceptable and environmentally sound. Roy et al. (2015) reported that inorganic fertilizers along with manure greatly influenced the yield contributing characters and yield of boro rice. Application of poultry manure along with inorganic fertilizers increased grain yield, protein content and aroma in aromatic fine rice (Sarkar et al., 2014). Hasan et al. (2004) also stated that BRRI dhan34 fertilized with 75% NPKS + poultry manure at 5 t ha⁻¹ produced the highest grain yield than Kalizira. The response of boro rice to poultry manure and combined with inorganic fertilizer and weed management are scarce under Bangladesh condition. Judicious nutrient management increases crop yield and at the same time reduces fertilization cost. Therefore, the present study was undertaken to observe the effect of plant nutrient and weed management in direct wet seeded boro rice.

Materials and Methods

The experiment was conducted at the *Farm of Farm Management Division*, Bangladesh Agricultural University, Mymensingh from December 2012 to June 2013. The experimental site belongs to the Old Brahmaputra floodplain (AEZ-9) with non-calcareous dark-grey floodplain soil. The land was medium high with silty loam texture having pH 6.8, available N 0.13%, P 13.9 ppm, organic carbon 0.93%, K 16.3 ppm and low in organic matter content.

The experiment consisted of six nutrient management viz. Control (No manure- PM and N-P-K-S-Zn), PM at 5 t ha⁻¹, recommended dose of prilled urea (PU) and other inorganic fertilizers (i. e. 120, 60, 40, 10 and 5 kg of N, P_2O_5 , K_2O , S and ZnSO₄, respectively), full dose of Urea Super Granules (USG) and other inorganic

fertilizers (i. e. 60, 40, 10 and 5 kg of P₂O₅, K₂O, S and ZnSO₄, respectively), 2.7 g USG + PM at 5 t ha⁻¹ and 2.7 g USG + PM at 2.5 t ha^{-1} and three weeding regimes viz. Unweeded control, hand weeding thrice at 20, 35 and 50 days after sowing (DAS) and Panida (Pandimethalin) (a) 2.5 l ha^{-1} + hand weeding once at 20 DAS. The experiment was laid out in a randomized complete block design with three replications. The size of unit plot was 4.0 m \times 2.5 m. The distances between blocks and plots were 1 m and 75 cm, respectively. Sprouted seeds of BRRI dhan28 were sown on puddled field having no standing water on 15 February 2013 with four seeds hill⁻¹ at 25 cm \times 15 cm spacing. The land was fertilized with as per treatment specification. Whole amount of TSP, MoP, gypsum, zinc sulphate and PM were applied at final land preparation. Urea was applied in three equal splits as top dressing at 15, 30 and 50DAS. As per experimental specification USG were placed at 8 cm depth at 15 DAS in the center of four hills in each alternate row with hand using a graduated bamboo stick.

Five hills (excluding border rows) from each plot were randomly selected, uprooted and properly tagged prior to harvest for recording data on crop characters and yield components. The crop of central 5 m^2 area of each plot was harvested on 25 June 2013. The harvested crop was bundled plot-wise separately, tagged properly and brought to the clean threshing floor. The bundles were sun dried, threshed and then grains were cleaned and weighed. The grain yield was adjusted to 14% moisture content. Straws were also sundried properly. Grain and straw yields were then converted to tha⁻¹.

The collected data were analyzed statistically following the ANOVA technique and the mean differences were adjudged by Duncan's Multiple Range Test (Gomez and Gomez, 1984) using a statistical computer package program MSTAT-C.

Results and Discussion

Effect on crop characters and yield components: Yield components such as number of effective tillers hill⁻¹, number of grains panicle⁻¹ and 1000-grain weight were influenced significantly due to plant nutrient management and weeding regime. The results showed that plant height differed significantly due to integrated fertilizer management. The highest plant height (90.29 cm) was obtained in full dose of USG and other inorganic fertilizers (i. e. 60, 40, 10 and 5 kg of P_2O_5 , K_2O , S and $ZnSO_4$, respectively) and lowest one (82.42) cm was from control (No manure- PM and N-P-K-S-Zn) (Table 1). The highest number of effective tillers $hill^{-1}$ (14.00) was obtained in recommended dose of prilled urea (PU) and other inorganic fertilizers (i.e. 120, 60, 40, 10 and 5 kg of N, P₂O₅, K₂O, S and ZnSO₄, respectively) whereas the lowest effective tillers hill⁻¹(9.15) was obtained from control (No manure- PM and N-P-K-S-Zn) (Table 1). Number of grains panicle⁻¹ was significantly influenced by plant nutrient management. T he highest number of grains panicle⁻¹ (75.23) was observed in 2.7 g USG + PM at 5 t ha⁻¹ and the lowest (59.01) was obtained from PM at 5 t ha⁻¹(Table 1). In case of weed management, the highest plant height (90.57 cm) was obtained in Panida (Pandimethalin) @ 2.5 l/ha and hand weeding once at 20 DAS and the lowest plant height (83.98 cm) was obtained in unweeded control (Table 2). The highest number of effective tillers hill⁻¹ (13.37) was obtained in hand weeding thrice at 20, 35 and 50 DAS and the lowest (9.57) from unweeded control (Table 2). The highest number of effective tillers hill⁻¹ (17.00) was obtained in the interaction between recommended dose of PU and other inorganic fertilizers (i. e. 120, 60, 40, 10 and 5 kg of N₂, P₂O₅, K₂O, S and ZnSO₄ respectively) with hand weeding thrice at 20, 35 and 50 DAS and the lowest one (7.27) was observed in unfertilized (No manure-PM and N-P-K-S-Zn) with unweeded control (Table 3). Datta and Gagot (1995) reported that hand weeding significantly lowered weed population thereby

increasing number of tillers. Panicle length was significantly influenced by the interaction between plant nutrient management and weed management. The highest panicle length (21.69 cm) was obtained from the interaction between recommended dose of PU and other inorganic fertilizers (i. e. 120, 60, 40, 10 and 5 kg of N, P²O₅, K₂O, S and ZnSO₄, respectively) with hand weeding thrice at 20, 35 and 50 DAS and the lowest one (16.66 cm) was obtained in PM at 5 t ha⁻¹ combined with unweeded control (Table 3). Number of grains panicle⁻¹ was significantly influenced by plant nutrient management. The number of grains panicle⁻¹ ranged from 56.27 to 85.36. The highest number of grains panicle⁻¹ (85.36) was observed in 2.7 g USG +PM at 2.5 t ha⁻¹ which was statistically identical with 2.7 g USG + PM at 2.5 t ha⁻¹ with Panida (Pandimethalin) @ 2.5 l ha⁻¹ and hand weeding once at 20 DAS the lowest number of grains (56.27) was found in unweeded control with unfertilized (No manure- PM and N-P-K-S-Zn) (Table 3). The findings are in agreement with that of Hasan et al., (2004). The highest 1000-grain weight (24.29 g) was recorded in the interaction of full dose of USG and other inorganic fertilizers (i.e. 60, 40, 10 and 5 kg of P₂O₅, K₂O, S and ZnSO₄ respectively) with Panida (Pandimethalin) (a)2.5 l ha⁻¹ and hand weeding once at 20 DAS whereas the lowest one (20.48 g) was found in unfertilized control combined with unweeded control.

Effect on grain yield: A remarkable change of grain yield was observed due to the weeding regime and integrated nutrient management and their interaction. The highest grain yield (3.71 t ha^{-1}) was obtained from the application of 2.7 g USG + PM at 2.5 t ha⁻¹ and the lowest one (1.15 t ha⁻¹) was in control (No manure-PM and no N-P-K-S-Zn) (Table 1).The highest grain yield (3.8 t ha⁻¹) was obtained Panida (Pandimethalin) @ 2.5 l ha⁻¹ and hand weeding once at 20 DAS and the lowest (1.26 t ha⁻¹)was obtained from unweeded control (Table 2).The highest grain yield (5.29 t ha⁻¹) was obtained from the application of 2.7 g USG + PM at 2.5 t ha⁻¹ with Panida (Pandimethalin) @ 2.5 l/ha and hand weeding once at 20 DAS, which was statistically

identical with 2.7 g USG + PM at 5 t ha⁻¹ and Panida (Pandimethalin) @ 2.5 l ha⁻¹ and hand weeding once at 20 DAS and the lowest grain yield (0.65t ha⁻¹) was obtained in the unweeded control combined with no manuring control (No manure- PM and N-P-K-S-Zn)(Table 3). Islam *et al.* (2015) reported that combined application of poultry manure and nitrogenous fertilizer increased grain yield and harvest index in transplant *aman* rice.

Effect on straw yield: Straw yield was significantly influenced by, plant nutrient management, weeding regime and their interaction. The straw yield (6.06 t ha ¹) was recorded in recommended dose of PU and other inorganic fertilizers (i. e. 120, 60, 40, 10 and 5 kg of N, P₂O₅, K₂O, S and ZnSO₄, respectively) and the lowest one (3.68 t ha⁻¹) was obtained in no manuring control (Table 1) Panida (Pandimethalin) @ 2.5 l ha⁻¹ and hand weeding once at 20 DAS produced the highest straw yield (6.39 t ha⁻¹) which was statistically identical with hand weeding thrice at 20, 35 and 50 DAS and the lowest one (3.92 t ha⁻¹) was obtained in unweeded control (Table 2). The highest straw yield (7.36 t ha^{-1}) was obtained from the interaction from recommended dose of PU and other inorganic fertilizers (i. e. 120, 60, 40, 10 and 5 kg of N, P₂O₅, K₂O, S and ZnSO₄, respectively) with Panida (Pandimethalin) @ 2.5 1 ha⁻¹ and hand weeding once at 20 DAS, the lowest one (2.62 t ha⁻¹) was obtained from unweeded control combined with no manuring control (No manure- PM and N-P-K-S-Zn) (Table 3). Poultry manure in combination with chemical fertilizers demonstrated superior effect in producing straw yield of boro rice as compared to sole application of chemical fertilizers.

Effect on harvest index: Harvest index was significantly influenced by the plant nutrient management, weeding regime and their interaction. The highest harvest index (36.94 %) was found in 2.7 g USG + PM at 2.5 t ha⁻¹ and the lowest one (23.46 %) was obtained from control (No manure- PM and N-P-K-S-Zn) (Table 1).The highest harvest index (36.37 %) was found in Panida (Pandimethalin) @ 2.5 lha⁻¹ and

hand weeding once at 20 DAS and the lowest one (23.97 %) was obtained in unweeded control (Table 2). The highest harvest index (44.21 %) was recorded from the interaction of 2.7 g USG + PM at 2.5 t ha⁻¹ with Panida (Pandimethalin) @ 2.5 l/ha and hand weeding

once at 20 DAS and the lowest one (20.26 %) from unweeded control with PM at 5 t ha⁻¹ interaction (Table 3). The results are in conformity with that of Hossain (2012).

 Table 1. Effect of plant nutrient management on crop characters, yield components and yield of direct wet seeded boro rice

	Plant	No. of	Panicle	No. of grains	1000-grain	Grain	Straw	Harvest
Plant nutrient	height	effective	length (cm)	panicle ⁻¹	weight (g)	yield	yield	index
	(cm)	tillers hill ⁻¹				(t ha ⁻¹)	(t ha ⁻¹)	(%)
T ₁	82.42 ^c	9.156°	18.52 ^{bc}	63.26 ^{ab}	22.48	1.15 ^c	3.68 ^c	23.46 ^c
T ₂	88.75 ^{ab}	11.84 ^{bc}	18.51 ^{bc}	59.01 ^b	22.70	1.67 ^c	4.84 ^b	24.44 ^{bc}
T ₃	90.02 ^a	14.00 ^a	20.65 ^a	67.90 ^{ab}	22.40	3.19 ^b	6.06 ^a	33.56 ^b
T ₄	90.29 ^a	12.76 ^b	19.20 ^{ab}	67.90 ^{ab}	22.55	3.37 ^{ab}	5.89 ^{ab}	35.59 ^{ab}
T ₅	88.34 ^{ab}	11.76 ^{bc}	17.84 ^c	75.23 ^a	22.67	3.38 ^{ab}	5.65 ^{ab}	34.86 ^b
T ₆	87.48 ^b	12.49 ^b	18.92 ^b	72.13 ^{ab}	22.61	3.71 ^a	5.77 ^{ab}	36.94 ^a
$S\overline{x}$	4.392	2.149	0.90	4.760	0.28	0.20	0.439	2.504
Level of	*	*	*	*	NS	**	**	**
Significance					140			

In a column, figures with same letter(s) or without letter do not differ significantly whereas figures with dissimilar letter differ significantly (as per DMRT); ** = Significant at 1% level of probability, * = Significant at 5% level of probability, NS = Not-significant; T₁: Control (No manure- PM and N-P-K-S-Zn); T₂ : PM at 5 t ha⁻¹; T₃: Recommended dose of prilled urea (PU) and other inorganic fertilizers (i. e. 120, 60, 40, 10 and 5 kg of N, P₂O₅, K₂O, S and ZnSO₄, respectively); T₄: Full dose of Urea Super Granules (USG) and other inorganic fertilizers (i. e. 60, 40, 10 and 5 kg of P₂O₅, K₂O, S and ZnSO₄ respectively); T₅: 2.7 g USG + PM at 5 t ha⁻¹

Table 2. Effect of weed management on crop characters, yield components and yield of direct wet seeded boro rice

Weed management	Plant	No. of	Panicle	No. of	1000-	Grain	Straw yield	Harvest index
	height	effective	length	grains	grain	yield	$(t ha^{-1})$	(%)
	(cm)	tillers hill ⁻¹	(cm)	panicle ⁻¹	weight (g)	(t ha ⁻¹)		
W_0	83.98 ^b	9.57°	18.11 ^b	57.17 ^b	20.58 ^b	1.26 ^b	3.92 ^b	23.97 ^b
W1	89.10 ^{ab}	13.37 ^a	19.38 ^a	71.22 ^{ab}	23.22 ^a	3.13 ^{ab}	5.63 ^{ab}	34.04 ^a
W2	90.57 ^a	13.0 ^{ab}	19.33 ^{ab}	76.72 ^a	23.91 ^a	3.84 ^a	6.39 ^a	36.37 ^a
Sx	4.39	2.14	0.90	4.76	0.28	0.20	0.43	2.50
Level of	*	**	*	**	**	**	**	**
Significance								

In a column, figures with same letter(s) or without letter do not differ significantly whereas figures with dissimilar letter differ significantly (as per DMRT); ** = Significant at 1% level of probability, * = Significant at 5% level of probability; NS = Not significant; W_0 : No weeding; W_1 : Hand weeding thrice at 20, 35 and 50 days after sowing (DAS); W_2 : Panida (Pandimethalin) @ 2.5 l/ha and hand weeding once at 20 DAS.

Interaction	Plant	No. of	Panicle	No. of	1000-grain	Grain	Straw yield	Harvest
(Plant nutrient	height	effective	length (cm)	grains	weight (g)	yield	(t ha ⁻¹)	index
× Weed	(cm)	tillers hill ⁻¹		panicle ⁻¹		(t ha ⁻¹)		(%)
management)								
$T_1 \times W_0$	77.48	7.27 ^d	18.64 ^{bcd}	56.27 ^d	20.48 ^d	0.6533 ^g	2.620 ^j	20.43 ^{de}
$T_1 \times W_1$	82.21	10.27 ^{bcd}	18.69 ^{bcd}	65.54 ^{bc}	23.53 ^{abc}	1.167 ^{efg}	3.880 ^{hi}	23.65 ^{cde}
$T_1 imes W_2$	87.57	9.933 ^{bcd}	18.23 ^{bcd}	67.98 ^{bc}	23.43 ^{abc}	1.640 ^{ef}	4.547 ^{fgh}	26.29 ^{cde}
$T_2 imes W_0$	84.03	8.133 ^{cd}	16.66 ^d	56.60 ^d	20.72 ^d	0.8067^{fg}	3.207 ^{ij}	20.26 ^e
$T_2 \times W_1$	92.07	13.60 ^{abc}	19.27 ^{abc}	58.83 ^{cd}	24.06 ^{ab}	1.563 ^{ef}	5.397 ^{cdef}	22.12 ^{de}
$T_2 \times W_2$	90.16	13.80 ^{abc}	19.60 ^{abc}	61.62 ^c	23.33 ^{bc}	2.653 ^d	5.930 ^{bcd}	30.94 ^{bc}
$T_3 imes W_0$	85.50	10.20 ^{bcd}	19.55 ^{abc}	56.67 ^c	20.39 ^d	1.667 ^e	5.170 ^{defg}	24.59 ^{cde}
$T_3 imes W_1$	91.65	17.00 ^a	21.69 ^a	66.13 ^{bc}	22.72 ^c	3.650 ^c	5.663 ^{bcdef}	39.31 ^a
$T_3 imes W_2$	92.90	14.80 ^{ab}	20.71 ^{ab}	80.90 ^{ab}	24.09 ^{ab}	4.277 ^{bc}	7.363 ^a	36.78 ^{ab}
$T_4 \times W_0$	86.47	10.47 ^{bcd}	18.52 ^{bcd}	61.49 ^c	20.61 ^d	1.837 ^e	4.723 ^{efgh}	28.64 ^{cd}
$T_4 \times W_1$	94.87	16.80 ^{ab}	19.39 ^{abc}	75.87 ^b	22.74 ^c	3.877 ^c	5.840 ^{bcde}	39.92 ^a
$T_4 \times W_2$	89.54	11.00 ^{abcd}	19.70 ^{abc}	80.67 ^{ab}	24.29 ^a	4.410 ^{bc}	7.127 ^{ab}	38.22 ^{ab}
$T_5 imes W_0$	83.90	9.867 ^{bcd}	17.28 ^{cd}	55.00 ^d	20.67 ^d	4.410 ^{bc}	3.780 ^{hi}	23.37 ^{cde}
$T_5 imes W_1$	89.20	11.97 ^{abcd}	18.01 ^{cd}	85.36 ^a	23.11 ^c	4.210 ^{bc}	6.480 ^{abc}	39.39ª
$T_5 imes W_2$	91.92	13.43 ^{abc}	18.21 ^{bcd}	85.33 ^{ab}	24.21 ^{ab}	4.800 ^{ab}	6.697 ^{ab}	41.81 ^a
$T_6 imes W_0$	86.49	11.51 ^{abcd}	18.01 ^{cd}	57.00 ^{cd}	20.59 ^d	1.503 ^{ef}	4.047 ^{ghi}	26.53 ^{cde}
$T_6 imes W_1$	84.59	10.60 ^{bcd}	19.21 ^{abc}	75.56 ^b	23.14 ^c	4.343 ^{bc}	6.563 ^{abc}	40.08 ^a
$T_6 \times W_2$	91.35	15.37 ^{ab}	19.53 ^{abc}	83.84 ^{ab}	24.10 ^{ab}	5.293ª	6.700^{ab}	44.21 ^a
Sx	4.393	2.149	0.90	4.760	0.2887	0.2000	0.4397	2.504
Level of	NS	*	*	*	*	**	**	*
Significance								

 Table 3. Effect of interaction between plant nutrient and weed management on crop characters, yield components and yield of direct wet seeded *boro* rice

In a column, figures with same letter(s) or without letter do not differ significantly whereas figures with dissimilar letter differ significantly (as per DMRT). ** = Significant at 1% level of probability, * = Significant at 5% level of probability, NS = Not-significant; T₁ : Control (No manure- PM and N-P-K-S-Zn); T₂ : PM at 5 t ha⁻¹; T₃: Recommended dose of prilled urea (PU) and other inorganic fertilizers (i. e. 120, 60, 40, 10 and 5 kg of N, P₂O₅, K₂O, S and ZnSO₄ respectively); T₄: Full dose of Urea Super Granules (USG) and other inorganic fertilizers (i. e. 60, 40, 10 and 5 kg of P₂O₅, K₂O, S and ZnSO₄ respectively); T₅: 2.7 g USG + PM at 5 t ha⁻¹; W₀ : No weeding; W₁: Hand weeding thrice at 20, 35 and 50 days after sowing (DAS); W₂:Panida (Pandimethalin) @ 2.5 l/ha and hand weeding once at 20 DAS.

Conclusion

From the present study it can be concluded that *Boro* rice can be cultivated with 2.7 g USG at the centre of four hills in each alternate row + PM at 2.5 t ha⁻¹ with Panida (Pandimethalin) @ $2.5 l ha^{-1}$ and hand weeding once at 20 DAS for appreciable grain yield. This

practice will in turn be beneficial for soil health and environment.

Acknowledgement

The financial assistance of the Ministry of Science and Technology, Govt. of the People's Republic of Bangladesh to carry out the research work, is thankfully acknowledged.

References

- Arancon NQ, Edwards CA, Bierman P (2006). vermicomposts Influences of field on strawberries: Part 2. Effects on soil and microbiological chemical properties. Bioresour. Technol. 97: 831-840.
- BARC (Bangladesh Agricultural Research Council) (2012). Fertilizer Recommendation Guide.
 BARC, Soils pub., No-58, Bangladesh Agril. Res. Coun., Farmgate, Dhaka.
- BBS (Bangladesh Bureau of Statistics) (2011). Yearbook of Agricultural Statistics of Bangladesh. BangladeshBur. Stat., Stat. Divn., Minis. Plann., Govt. People'sRepub. Bangladesh, Dhaka. pp. 136-40.
- BBS (Bangladesh Bureau of Statistics)(2012). Yearbook of Agricultural Statistics of Bangladesh. BangladeshBur. Stat., Stat. Divn., Minis. Plann.Govt. People'sRepub. Bangladesh, Dhaka. 45p.
- Datta R, Gagot AK (1995). Integrated weed management in direct seeded upland rice. Rice Abst.18: 183.
- Gomez KA, Gomez AA (1984). Statistical Procedures for Agricultural Research. Int. Rice Res. Inst., John Wiley and Sons. New York, Chichester, Brisbane, Toronto, Singapore. 680p.
- Haque SMA, Hossain MD, Talukder KH, Asaduzzaman M, Sayed MA, Haque MA (2012).
 Effect of weeding regime on the weed infestation and crop performance of transplant *Aman* rice. J. Sci. Foundation, 9: 27-40.

- Hasan MK, Sarkar MAR, Hasan AK (2004). Effect of poultry manure based integrated fertilizer management on growth and yield of aromatic rice. Bangladesh J. Seed Sci. & Tech. 8(1&2): 97-103.
- Hussain MM, Alam MS, Islam MA, Rashid MM, Islam MF, Rashid MA, Razzaque MS, Mamun MSI, Islam MR, Kabir H, Parvin S, Mukul HR (2006).
 In: Baqui MA (eds.) Proc. Twenty first BRRI-DAE Joint Workshop. Bangladesh Rice Res. Inst., Joydebpur, Gazipur, Bangladesh. September 19-21, 2006. pp. 1-3.
- Islam SMM, Paul SK, Sarkar MAR (2015). Effect of weeding regime and integrated nutrient management on yield contributing characters and yield of BRRI dhan49. J. Crop and Weed. 11: 193-197.
- Rahman MH, Main MAJ (1997). Effect of longterm fertilizer on soil fertility and rice yield.*Bangladesh J. Nuc. Agric.*, 13: 65-70.
- Roy B, Sarkar MAR, Paul SK (2015). Effect of integrated nutrient management in *Boror*ice cultivation. SAARC J. Agri. 13 (2): 131-140.
- Sarkar SK, Sarkar MAR, Islam N, Paul SK (2014). Yield and quality of aromatic fine rice as affected by variety and nutrient management. J. Bangladesh Agril. Univ. 12 (2): 279-284.
- Hossain S (2012). Effect of cowdung and nitrogen (urea) on the growth, yield and yield contributing characters of aromatic rice cv. BRRI dhan50. M. S. Thesis. Dept. Agron.Bangladesh Agril.Univ. Mymensingh. pp. 21-29.