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Abstract 

 

The objective of this paper is to establish some results for generalized (U, M) -

derivations in semiprime  -rings, where U is a Lie ideal of a semiprime Γ-ring M . Let 

d be a ),( MU -derivation and f be a generalized ),( MU -derivation on M then we 

proved that  

• )()(=)( vduvufvuf   for all Uvu , and  , when U is an admissible Lie 

ideal of M; 

• )()(=)( mdumufmuf   for all MmUu  , and  , when U is a square 

closed Lie ideal of M.  
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1. Introduction 

 

),( RU -derivations in rings have been introduced by A. K. Faraj, C. Haetinger and A. 

H. Majeed [1] as a generalization of Jordan derivations on a Lie ideal of a ring. We 

introduced ),( MU -derivations in  -rings as a generalization of Jordan derivations 

on Lie ideals of a  -ring in [2] and proved that, )()(=)( vduvudvud    for all 

 ,, Uvu , where U  is an admissible Lie ideal of M  and d  is a ),( MU -

derivation of M . We also proved that, if Uuu   for all Uu  and   then 

)()(=)( mdumudmud    for all MmUu  ,  and  . Following the notion 

of ),( MU -derivations we then introduced the concept of generalized ),( MU -

derivations in [3] and proved the analogous results considering generalized ),( MU -

derivations of prime  -rings corresponding to the results of ),( MU -derivations. We 
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refer the reader to R. Awtar [4],  M. Ashraf  and  N. U. Rehman  [5], W. E. Baarnes 

[6], Y. Ceven [7], I. N. Herstein [8], and  A. K. Halder  and A. C. Paul  [9] where we 

can find further references and more detailed explanations concerning the motivations 

and the background of these researches. The notion of a  -ring has been developed by 

N. Nobusawa [10], as a generalization of a ring. Following W. E. Barnes [11] 

generalized the concept of Nobusawa’s  -ring as a more general nature in the 

following way.  

     Let M  and   be additive abelian groups. If there is a mapping MMM   

(sending ),,( yx   into )yx  such that  

(i) zxyxzyxyxyxyxzyzxzyx   =)(,=)(,=)( , 

(ii) )(=)( zyxzyx   for all Mzyx ,,  and  , , 

then M  is called a  -ring. A  -ring M  is semiprime if 0=aMa   (with Ma ) 

implies 0=a . We denote the commutator uvvu    by 
],[ vu  for all Mvu ,  and 

 . An additive subgroup U  of a  -ring M  is a Lie ideal of M  if for all 

MmUu  ,  and  , implies Umu ],[ . A Lie ideal U  is a square closed Lie 

ideal of a  -ring M  if ,Uuu   for all  ,Uu  and if the Lie ideal U  is square 

closed and , where )(MZ denotes the center of M  then U  is an admissible 

Lie ideal of M . In this article, we generalize some results of [3] for square closed and 

admissible Lie ideal of semiprime  -rings by the new concept of ),( MU -derivation.   

 

2.   Generalized ),( MU -Derivations in Semiprime  -Rings 

 
Following the notions of ),( MU -derivation of a  -ring in [9], we then introduced the 

concepts of generalized ),( MU -derivations of  -rings in [3] in the following way.  

 

Definition 1.  Let U  be a Lie ideal of a  -ring M . An additive mapping MMf :  

is a generalized ),( MU -derivation of M  if there exists a ),( MU -derivation d  of M  

such that )()()()(=)( udsusfmdumufusmuf    is satisfied for 

all MsmUu  ,;  and  .  

The following are examples of ),( MU -derivation and generalized ),( MU -derivation 

of a  -ring  M.  

 

Example 1.  Let R  be an associative ring with 1, and let U  be a Lie ideal of R . Let 

)(= 1,2 RMM  and 


































 Zn

n

:0

.1

=
, then M  is a  -ring. If 

MRxxxN  }:),{(= , then N  is a sub  -ring of M . Let }:),{(=1 UuuuU  , 

then 
1U  is a Lie ideal of N . If RRf :  is a generalized ),( RU -derivation, then 

there exists a ),( RU -derivation RRd :  such that 

)()()()(=)( usdusfxudxufsuuxf   for all Uu and Rsx , .  If we 

define a mapping NND :  by ))(),((=)),(( xdxdxxD , then we have  
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 After calculation , we get  
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  and ).,(=1 yyy  Hence D  is a ),( 1 NU  derivation 

on N . Let NNF :  be the additive mapping defined by ))(),((=)),(( xfxfxxF , 

then considering 
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 ).()()()(=)( 111111111111 uDyuyFxDuxuFuyxuF    

Hence F  is a generalized ),( 1 NU derivation on N .  

Except otherwise mentioned, throughout this paper, M  is a 2-torsion free semiprime 

 -ring which satisfies the condition (*) cbacba  =  for all Mcba ,, ; 

 ,  and U  is a Lie ideal of M . 

To generalize some results of [3] in semiprime  -rings with generalized ),( MU -

derivations, we develop some important results proceeding as follows.   

 

Lemma 2.1 If f  is a generalized ),( MU derivation of M  for which d  is the 

associated ),( MU derivation of M . Then for all MmUvu  ;,  and ,,   

);()()(=)()( udmuumduumufumufi     

).()(

)()()()(=)()(

udmvumdv

umvfvdmuvmduvmufumvvmufii








  

Proof. By the definition of a generalized ),( MU -derivation of M , we have 

)()()()(=)( udsusfmdumufusmuf    for all MsmUu  ,;  and 

 . Replacing m  and s  by )(2)(2 ummu    and let 

uummuummuuw  ))(2)((2))(2)((2=  .  

On the one hand
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))()()()()()(2(=)( udummuuummufummuduummuufwf  

 )()()()()()(2(= udmuumdumduumuduumufmuuf  

 ))()()()()()( udumudmuuudmuumfumduumuf    
 )()()()()()(2(= udmuumdumduumuduumufmuuf  

 )).()()()()()( udumudmuuudmuumfumduumuf    (1) 

 On the other hand 
                           

)2()(4))()(

)()()()(2(=

)(4))()(

)()()()(2(=

)(2)(2))(2)((2=)(

umufudumuudm

uumfmduumudumuuf

umufudumuudm

uumfmduumudumuuf

umufumufuummuufwf





















 
  

 Comparing (1) and (2), and since M  is 2-torsion free  

 

.,;;),()()(=)(   MmUuudmuumduumufumuf  (3) 

 If we linearize (3) on u , then (ii) is obtained.   

 

Definition 2.  Let f  be a generalized ),( MU -derivation with the associated ),( MU -

derivation d  of M . We define )()()(=),( mdumufmufmu    and 

)()()(=),( mdumudmudmu    for all MmUu  ;  and .   

 Directly from the definition, the following properties follow at once.  

 

Lemma 2.2 If f  is a generalized ),( MU -derivation of M , then for all 

MnmUvu  ,;,  and ,,   
(i) );,(=),( ummu    (ii) );,(),(=),( mvmumvu    

 (iii) );,(),(=),( numunmu    (iv) ),(),(=),( mumumu   
.  

Proof. (i)   By the definition of ),,( mu
 we have 

).()()(=),( mdumufmufmu    Using Definition 1, we get  

).,(=),(

0.=)()(

)()()()()()(=

)()()()()(=

)()()()()()(=),(),(

ummu

udmumf

mdumufudmmduamfmuf

udmumfmdumufummuf

udmamfumfmdumufmufummu























 

 (ii)   By the definition of ),( mu , we get  

).,(),(=

)()()()()()(=

)()()()()(=

)()()())((=),(

mvmu

mdvmvfmvfmdumufmuf

mdvmdumvfmufmvmuf

mdvumvufmvufmvu



















 

 (iii)- (iv): These are too easy to prove.   

 

Lemma 2.3 With our notations as above, for any MmUvu  ;,  and ,,   the 

following are true: (i) );,(=),( ummu    (ii) );,(),(=),( mvmumvu    
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(iii) );,(),(=),( numunmu    

(iv) ),(),(=),( mumumu   
.  

Proof. Proceeding in the same way of the proof of above lemma.  

 

Lemma 2.4 Let U  be a Lie ideal of a 2-torsion free  -ring M  satisfying the 

condition(*) then }],[:{=)( UMxMxUT  
 is both a subring and a Lie ideal of 

M  such that )(UTU  .  

Proof. We have U  is a Lie ideal of M , so UMU ],[ . Thus ).(UTU   Also we 

have )(]),([ UTUMUT 
. Hence )(UT  is a Lie ideal of M . Now suppose that 

)(, UTyx   then Umx ],[  and Umy ],[  for all Mm  and  .  

Now .],[],[=],[ Uymxmyxmyx   
 Therefore, Umyx  ],[  for all 

MmUTyx  ),(,  and  , . Hence ).(UTyx     

 

Lemma 2.5  Let  be a Lie ideal of a 2-torsion free semiprime  -ring M  

satisfying the condition (*) then there exists a nonzero ideal MUUMK  ],[=  of M  

generated by 
],[ UU  such that .],[ UMK 

  

Proof. First we prove that if 0=],[ UU  then )(MZU  , so let 0=],[ UU  for Uu  

and  , we have 0=]],[,[ xuu  for all Mx . For all Mz  and  , we 

replace x  by zx  in 0=]],[,[ xuu  and obtain   





















],[],2[=

],[],[]],[,[],[],[]],[,[=

]],[,[]],[,[=

]],[],[,[=

]],[,[=0

zuxu

zuxuzxuuzuxuzuux

zxuuzuxu

zxuzuxu

zxuu





  

 By the 2-torsion freeness of M , we obtain 0.=],[],[   zuxu  Now replacing z  by 

xz , we obtain  













],[],[=

],[],[],[],[=

],[],[=0

xuzxu

xzuxuxuzxu

xzuxu


 

 That is, 0.=],[],[   xuMxu  Since M  is semiprime, 0=],[ xu . This implies that 

)(MZu  and therefore, )(MZU   is a contradiction. So let 0],[ UU . Then 

MUUMK  ],[=  is a nonzero ideal of M  generated by .],[ UU  Let 

MmUyx  ,,  and  , , we have ).(],[,,],[ UTUmxymyx   Hence 

).(],[],[=],[ UTmxymyxmyx      

Also we can show that, )(],[ UTyxm   and therefore, we obtain .],],[[ UMUU 
 

That is, Utsmyx  ],],],],[[[[  for all Mtsm ,,  and .  

 Hence ).(]],],],[[],[],[],[],[ UTtmmyxsyxmssyxmsmyx     
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Since )(],[],[,],[,],[ UTyxmsyxssmyx   . Thus we have, 

Utsyxm  ],],[[  for all Mtsm ,,  and .  Hence .],[ UMK 
   

 

Lemma 2.6  Let 
 

 be a Lie ideal of a 2-torsion free semiprime  -ring M  

satisfying the condition (*)  then 0=aa  and there exists a nonzero ideal 

MUUMK  ],[=  of M  generated by 
],[ UU  such that UMK ],[  and 

{0}.== KaaK    

Proof. If {0}=aUa   for all ,,   then 0=],[ amaaa  
 for all Mm  and 

.  Therefore, by our assumption   

 

.=

=

)(=0

aamaaamaaa

aamaaamaaa

aamamaaa












 

 Since 0=aaa  , we have 0.=)()( aamaa   Since M  is semiprime, 0.=aa  

Now we obtain 0=],[ aumaka  
 for all UuMmKk  ,,  and .,,,   

Again using our assumption  and {0}.=aUa      

.=

=

)(=0

aumaka

auakmaaumaka

auakmmaka










 

 So, we obtain 0.=],[ aakmaka  
 This implies that 0=)( akaakmaka    

and hence 0.=akamakaaakmaka    By using assumption and 

0=aa , we obtain 0.=)()( akamaka   Since M  is semiprime, 0.=aka   Thus 

we find that 0.=)()( kaMka    Hence 0=ka  for all Kk , that is {0}.=Ka  

Similarly we obtain {0}=aK .  

 

Lemma 2.7 Let  be a Lie ideal of a 2-torsion free semiprime  -ring M  

satisfying the condition (*) (i)  if {0}=aUa  , then 0=a ; (ii) If {0}=Ua  (or 

{0})=aU , then 0=a ; (iii) if Uuu  for all Uu and {0}=bUa   then 

0=ba and 0=ab for all  .   

Proof. (i) By Lemma 2.5, we have {0}=],[= aMUUMaK   
 and 0=aa  for all 

.  Therefore, for all Myx ,  and ,,   we obtain  

ayaxa

ayaxaayaxa

ayaxaayaaxayxaaayaxa

ayaaxayaxa

ayaaxxa

ayaxa



















2=

=

=

],[],[=

],[=

]],],[[=0








 

 By the 2-torsion freeness of M , we have 0=ayaxa  . Thus we obtain, 

0.=axayaxa   By using cbacba  =  for all Mcba ,,  and  , , we 

have 0.=)()( axayaxa   This implies that 0.=)()( axaMaxa   Since M  is 
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semiprime 0,=axa   for all Mx  and , . Again using the semiprimeness of 

M ,we obtain 0.=a    

(ii)  If {0}=Ua , then {0})=aUa   for all  , therefore by (i), we obtain 0=a . 

Similarly, if {0}=aU , then 0=a . 

(iii)  If {0}=bUa  , then we have {0}=)()( abUab   and hence by (i), 0=ab  for 

all  . Also {0}=)()( baUba   if {0}=bUa   and hence 0.=ba   

In obtaining our main results the following lemma plays an important role.  

 

Lemma 2.8  If U  is an admissible Lie ideal of a 2-torsion free semiprime  -ring M  

satisfying the condition (*)  and f  is a generalized ),( MU derivation of M  for 

which d  is the associated ),( MU derivation of M , then for all Uwvu ,,  and 

 ,, ,   (i) 0;=],[),(   vuwvu   (ii) 0;=],[),(   vuwvu       

 (iii) 0.=],[),(   vuwvu   

Proof. (i) Let )4(= vuwuvuvwvux   . Using Lemma 2.1(ii), we have  

))(2)(2)(2)((2=)( vuwuvuvwvufxf    

  vuwuvfuvdwvuuvwdvuuvwvuf  )(4)(4)(4)(4=   

     ).(4)(4 vudwuvvuwduv    

 On the other hand, using Lemma 2.1(i), we have  

 

)(4)(4

4)()(4)(44)(=

))(4)(4(=)(

vduwuvvuwudv

vuwuvfudvwvuuvwvduuvwvuf

vuwuvuvwvufxf












 

uvdwvuuvwdvuuvwvduuvwvuf  )(4)(4)(4)(4=       

vuwduvvuwudvvuwuvfudvwvu  )(4)(4)(4)(4   

      ).(4)(4 vduwuvvudwuv    

 Comparing the right side of )(xf  and using the 2-torsion freeness of M   

)()()()( vudwuvvuwuvfuvdwvuuvwvuf    

)()()()(= udvwvuuvdwvuuvwvduuvwvuf    

 ).()()()( vduwuvvudwuvvuwudvvuwuvf    

 Therefore,  

vuwudvuvfuvfuvwvduvufvuf  ))()()(())()()((   

0.=))()()(())()()(( vduvudvudwuvudvuvduvdwvu    

 Using Definition 2, we obtain  

 

0.=),(),(),(),( vuwuvuvwvuvuwuvuvwvu     

 Now, using Lemma 2.2(i) and 2.3(i), we have  

 .,,;,,0,=),(],[],[),(    Uwvuvuwvuvuwvu  

Since d  is a ),( MU -derivation, we have 0=),( vu  for all Uvu ,  and  , by 

[9].  

Using this we obtain the desired result. All other results are proved similarly.  
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Lemma 2.9 Let U  be an admissible Lie ideal of a 2-torsion free semiprime  -ring M  

and let Uba , . If 0=aubbua    for all Uu and  , then 

aubbua  =0= .  

Proof. Let Ux  and   be any elements. Using the relation 0=aubbua    

for all Uu and  ,  repeatedly, we get  

).()4(=

)(4=

)(4=

))(4(=

))(4(=

)()4(=)()4(

buaxbua

buaxbua

bubxaua

bubxaua

buaxaub

buaxaubbuaxbua





















 

 This implies, 0=))()8(( buaxbua  . Since M  is 2-torsion free, 

0.=)()( buaxbua   Therefore, 0.=)()( buaUbua   Thus by Lemma 2.7 (i), 

we get 0.=bua   Similarly, it can be shown that 0.=aub     

 

Lemma 2.10 Let M  be a 2-torsion free semiprime  -ring satisfying the condition (*) 

and U  be an admissible Lie ideal of M . Let f  be a Jordan generalized derivation on 

U  of M . Then for all Uwvu ,,  and ,,,   

(i) 0;=),(],[ vuwvu     (ii) 0;=),(],[ vuwvu     (iii) 0=),(],[ vuwvu    .  

Proof. (iii) We have 0,=),(],[),(],[ vuwvuwvuwvu     for all Uv .  

By Lemma 2.7(i), 0.=),(],[ vuwvu     All other results are proved similarly.    

 

Lemma 2.11 Let M  be a 2-torsion free semiprime  -ring satisfying the condition (*) 

and U  be an admissible Lie ideal of M . If f  is a Jordan generalized derivation on U  

of M , then for all Uwyxvu ,,,,  and ,,,   

(i) 0=],[),(   yxwvu  ; (ii) 0=),(],[ vuwyx     ; 

(iii) 0=],[),(   yxwvu ; (iv) 0=),(],[ vuwyx    .  

Proof. (i) If we substitute xu   for u  in the Lemma 2.8 (iii), we get 

0.=],[),(   vxuwvxu   

This implies 

0.=],[),(],[),(],[),(],[),(   vxwvxvuwvxvxwvuvuwvu   

Which gives 

0.=],[),(],[),(   vuwvxvxwvu   

Now by using Lemma 2.10 (iii), we obtain 

0.=

],[),(],[),(=)],[),(()],[),((   vuwvxuvxwvuvxwvuuvxwvu 

Hence, by Lemma 2.7(i), we get 0.=],[),(   vxwvu  

Similarly, by replacing yv  for v  in this result, we get 0.=],[),(   yxwvu  

(ii) Proceeding in the same way as described above by the similar replacements 

successively in Lemma 2.10 (iii), we obtain  
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.,,,,,,0,=),(],[    Uwyxvuvuwyx  

(iii) Replacing    for   in (i), we get 

0.=],[),(    yxwvu  

This implies  

0.=)],[],([)),(),((   yxyxwvuvu   

Therefore 
 0.=],[),(],[),(],[),(],[),(   yxwvuyxwvuyxwvuyxwvu   

Thus by using Lemma 2.10 (iii), we get  
0.=],[),(],[),(   yxwvuyxwvu   

Thus, we obtain 

0.=

],[),(],[),(=)],[),(()],[),((   yxwvuuyxwvuyxwvuuyxwvu    

Hence, by Lemma 2.7 (i), we obtain 0.=],[),(   yxwvu   

(iv) As in the proof of (iii), the similar replacement in (ii) produces (iv).  

 

 Now, we prove the following two theorems with generalized ),( MU -derivation of a 

semiprime  -ring M .  

 

Theorem 2.1 Assume that U  is an admissible Lie ideal of a 2-torsion free semiprime 

 -ring M  satisfying the condition (*)  and f is a generalized ),( MU -derivation of 

M , then 0=),( vu  for all Uvu , and .  

 Proof.  By Lemma 2.8 (iii), we have  

.,;,,0,=],[),(    Uwvuvuwvu  

By Lemma 2.11 (iii), we have  

.,,;,,,,0,=],[),(    Uyxwvuyxwvu  

Since U  is not contained in )(MZ , so 0.],[ yx  Thus, by Lemma 2.7, we get 

0=),( vu  for all Uvu ,  and  .   

 

Remark 2.1 If we replace U  by a square closed Lie ideal in Theorem 2.1, then the 

theorem is also true.  

 

Theorem 2.2 Let U  be a square closed Lie ideal of a 2-torsion free semiprime  -ring 

M  satisfying the condition (*) then )()(=)( mdumufmuf    for all MmUu  ;  

and  .  

Proof. From Theorem 2.1 and Remark 2.1, we have  

  ;,0,=),( Uvuvu                                                                    (4) 

Replacing v  by ummu    in (4), we get 0.=),( ummuu    Since 

Uummu    for all Uu , Mm  and  , . Therefore,  
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).()()()(=

)()()()()(

)()()()()(=

)()()(

)()()()()(=

)()()())((=

),(=0

mduumudumuufmuuf

udmuumdumduumuduumuf

muufudmuumduumufmuuf

udmuumdumduu

muduumufmuufumufmuuf

ummuduummuufummuuf

ummuu





























 

 This implies,       

  

.,;;0,=),(

0.=)()()())((

)()()(=)(













 MmUumuu

mduumuufmuuf

mduumudumuufmuuf
                                                          (5) 

 Now, let umumuux  = . Then by the definition of generalized ),( MU -

derivation, we have  

).()()()()(=

)()()()(=)(

udmuumufmduumudumuuf

udmuumufmudumuufxf







                        (6) 

 On the other hand, using (5) and Lemma 2.1(i)   

 
).()()()()()(=

)()(=)(

udmuumduumufmduumudumuuf

umufmuufxf







  (7) 

 Comparing (6) and (7), we get  
0.=))()()(( umdumufmuf    

This yields,  

.,;;0,=),(   MmUuumu                                                          (8) 

 Linearize (8) on u  and using equation (8), we get  

0.=),(),( umvvmu                                                                              (9) 

 Replacing v  by vv  in equation (9), we obtain  

0.=),(),( umvvvvmu     

Since 0=),( mvv  for all MmUv  ,  and .,   This is seen in the equation (5) 

for vv  in place of uu . Therefore, we have  

.,,;;,0,=),(   MmUvuvvmu                                  (10) 

 Replacing v  by vu   in (10) and using (5), we obtain  
 
 

.0=),(),(

0.=)(),(

0=)()(),(

uvmuvumu

vvuvvuuumu

vuvumu


















 

Now using (8), this implies 0=),( uvmu   for all MmUvu  ;,  and .,,   

Since U  is noncentral, by Lemma 2.7, 0=),( mu  for all MmUu  ;  and .  

Consequently, )()(=)( mdumufmuf    for all MmUu  ;  and  .  
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3. Conclusion 

 

If the Lie ideal U  is square closed and  then U is an admissible Lie ideal of M  

so, for both the cases )()(=)( vduvufvuf    
for all Uvu , and   but for only   

square closed case   )()(=)( mdumufmuf    
for all MmUu  , and  . 
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