Pulmonary Alveolar Microlithiasis

B. GAYATHRI, 1 S KEERTHI VASAN2

Abstract
Pulmonary alveolar microlithiasis (PAM) is a rare idiopathic disease characterized by microliths in the lungs which is usually asymptomatic and often diagnosed incidentally. Here we discuss a case of a young woman while evaluating for surgery presented with an abnormal chest X ray of bilateral diffuse nodular opacities. Patient was completely asymptomatic. High resolution CT scan revealed crazy paving pattern, black pleura sign, and pleural calcification typical findings of pulmonary alveolar microlithiasis. CT guided lung biopsy confirmed the diagnosis.

Keyword: Black pleura sign, calcium deposition, crazy paving pattern, pulmonary alveolar microlithiasis

Introduction
Pulmonary alveolar microlithiasis (PAM) is a rare idiopathic disease characterized by microliths in the alveoli, and was first described by Friedrich in 1856 and then by Harbitz in 1918.1,2 In 1957, Sosman emphasized that 50% of the cases were familial.3 The autosomal recessive inheritance was shown in later reports, with siblings usually being affected.4,5 Mariotta S et al review report on 576 cases has shown that the etiology of the disease is still unknown and it is widespread throughout the world.6 We present a case of 23 year old female incidentally presented with an abnormal chest radiograph diagnosed as pulmonary alveolar microlithiasis.

Case report
A 23 year old female diagnosed as acute appendicitis planned for laparoscopic appendicectomy underwent routine investigations. Incidentally her chest radiograph (fig.1) showed diffuse fine nodular opacities throughout the lung fields for which the patient was referred to us. However, the patient was totally asymptomatic and had no respiratory complaints. The nodular opacities were sharply defined, discrete and showed greater involvement of lower compared to upper zones. Systemic examination and routine laboratory tests were unremarkable. Spirometry showed normal ventilatory function. High resolution CT scan (HRCT) of lung revealed a crazy paving pattern7(fig.2) with black pleura sign(fig.3) and pleural calcification.8 In fiberoptic bronchoscopy, the endobronchial appearance was normal. Bronchial lavage fluid was examined for tuberculosis and found as negative. She underwent CT guided biopsy of the lung tissue and the histopathological report came as calcium deposition in the alveoli which confirmed the diagnosis of pulmonary alveolar microlithiasis. In view of the familial association of this disease, sister and the brother of our patient (21 and 19 years old, respectively) were invited for chest radiographies. No abnormalities were detected in the X-rays of the siblings.

Fig.-1. Bilateral diffuse nodular opacities

1. Assistant Professor, PSG Medical College, Coimbatore, Tamil Nadu, India.
2. Consultant Pulmonologist, KG hospital Pvt Ltd, Coimbatore, Tamil Nadu, India.
Correspondence: Dr. B. Gayathri, No.55, Ashok Nagar II Avenue, M.K.P Colony, Ganapathy, Coimbatore, Tamilnadu – 641006. E-mail: drgayukv@yahoo.co.in
Discussion

Pulmonary alveolar microlithiasis (PAM) is a rare diffuse lung disease characterized by the accumulation of calcium phosphate microliths within the alveoli. Disease is prevalent amongst family units with a high rate of consanguinity among the parents of affected individuals suggesting the hypothesis of the role of genetic factors in causing PAM. Recently, corutctal et al have identified the gene mutation responsible for the disease as SLC34A2 (the type IIb sodium phosphate co-transporter gene), which is involved in phosphate homeostasis in several organs, including the lung surface, readily apparent on HRCT. Asymptomatic cases, even with extensive radiographic involvement, are often discovered incidentally. Cough and dyspnoea are the most common presenting symptoms and usually occur late in the course of the disease. Normal or mild restrictive pulmonary physiology may be present in the asymptomatic individual. With progressive disease, severe lung restriction may ensue with impairment of the diffusing capacity and gas exchange abnormalities. Cor pulmonale frequently occurs late in the course of the disease, after symptoms of respiratory insufficiency have been present for several years. Right ventricular hypertrophy has been a frequent finding in postmortem examination. The chest radiograph shows bilateral, sand-like, micronodular calcified densities known as microliths or calcispherites, which are usually less than 1 mm in diameter. They appear concentrated in the lower two-thirds of the lung, often obliterating the diaphragmatic, mediastinal, and cardiac borders. The greater radiographic density at the lung bases is likely due to the larger lower lobe volumes rather than selective predisposition. Other findings that may be seen include bullae in the lung apices, a zone of increased lucency between the lung parenchyma and the ribs (known as a black pleural line), and pleural calcification. CT and the 99mTc diphosphonate scan have been used to confirm diffuse calcification in PAM. CT scan of the chest reveals a diffuse infiltrative pattern, and the 99mTc diphosphonate scan reveals increased uptake of the isotope throughout both lungs. The predominant high resolution HRCT finding is the presence of micronodular calcifications primarily located along the bronchovascular bundles and subpleural regions and perilobular distribution. Pulmonary function studies are initially normal. In about 30% of the patients, a mild restrictive defect evolves. The most common findings...
are decreased vital and total lung capacity, normal residual volume/total lung capacity ratio and decreased diffusing capacity.19 The standard chest radiograph and CT, with results for PAM, are enough to diagnose the disease, even if microscopic evidence of the microliths in the alveoli was obtained in most cases.20,21 Microliths in the sputum and bronchoalveolar lavage are not diagnostic because patients with chronic obstructive pulmonary disease and tuberculosis expectorate microliths as well.22 In histologic examination of open lung or transbronchial biopsies, the lesions of PAM consist of intralveolar calcispherites, which represent laminated calcium phosphate concretions. There is no known therapy for PAM. However there was a single report23 where radiologic lesions due to PAM were found to be reduced after treatment with disodium etidronate. Bilateral lung transplantation is a viable option for advanced cases. It has been reported that PAM cases followed after transplantation did not show evidence of recurrence.24,25

Conclusion

The present case illustrate that in diffuse parenchymal lung disease particularly in a young asymptomatic patient pulmonary alveolar microlithiasis should be considered in the differential diagnosis. Scrutiny of the long-term follow-up data of PAM patients reveals that the prognosis for PAM is poor. The establishment of an effective treatment, which is not yet available, is mandatory.

Conflict of Interest: None

References:

1. Friedrich N. Corpora amylacea in den Lungen. Arch Pathol Anat 1856; 9: 613-8
3. Sosman MC, Dodd GD, Jones DW, Pillmore GU. The familial occurrence of pulmonary alveolar microlithiasis. AJR 1957; 77:947-1012