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Abstract: In this study, a new approach of the 
application of finite element method is presented, 
to solve the initial stages of crack propagation 
problems which mean the deformation due to the 
stress and strain of a material. In early 
applications of the finite element method for the 
analysis of crack propagation, the crack-tip 
motion was modelled by discontinuous jumps. We 
have implemented one dimensional finite element 
discretization to solve crack propagation 
problem. The parallel algorithm with parallel 
computer system has been used in order to 
perform the computational analysis of finite 
element for this study. Parallel Virtual Machine 
(PVM) has been used as a message passing 
software with Parallel Computer System. The 
result of this study will be useful in the 
mathematics and engineering fields. In 
mathematics, the research will widen the 
application of finite elements in solving the 
engineering science problems. 
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1 Introduction 
Finite element method is a powerful 
technique that originally develops for 
structural analysis. Propagation problems 
refer to time-dependent, transient and 
unsteady-state phenomena. The method is 
applied to evaluate the stress intensity factors 
for plates of arbitrary shape using 
conventional finite elements [1]. 
PVM is a software package that permits 
heterogeneous collection of Linux 
environment as open space software hooked 
together by a network to be used as a single 
distributed parallel processor.  
The most common applications are found in 
mechanics – solid mechanics, fluid 
mechanics, heat transfer and thermal stress 
analysis, couple problems, etc. A modern 

definition of the finite element method might 
state that it is simply a numerical procedure 
for finding approximate solution to 
boundary-value problems. In other words, it 
is to find a best-fit solution. Here, the value 
of the residual is minimized in some way to 
obtain the best-fit solution. In view of the fact 
that the method is approximation, so to 
archive such approximation there are four 
common methods to be used; collocation, 
subdomain integration, Galerkin, and least 
squares [2]. 
The basic concept of finite element method 
can be track through a series of papers which 
was published by Turner et al., Clough, 
Martin and Topp in 1956 [1, 3]. With these 
papers, the development of finite element in 
engineering applications began [3, 4]. The 
method was soon recognized as a general 
method of solution for partial differential 
equation.  
We have divided this paper in the following 
way: In section 2, steps of the proposed finite 
element application is presented to solve one 
dimension crack propagation problem along 
with the C programming source code, parallel 
computation and performance measurement 
equations are explained in section 3, in 
section 4, a mathematical model of initial 
stages of crack propagation and discretization 
is constructed. Section 5 and 6 will describe 
numerical analysis and results and parallel 
performance estimation respectively and by 
the end of this paper, the conclusion has been 
presented. 
 
2 Our Proposed Approach 
We have implemented the following steps of 
finite element applications in order to solve 
the one dimension crack propagation 
problem, 
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Step (i): discretization of the domain,  
Step (ii): selection of an interpolation or 
shape function,  
Step (iii): derivation of element characteristic 
matrices and vectors, 
Step (iv): assemblage of element 
characteristic matrices and vectors,  
Step (v) solution of the system equations. 
 
Below is the part of C programming source 
code that was developed to analyze one 
dimension crack propagation problem.   
__________________________________________________ 
 
printf("Load Vector, F:\n"); 
fprintf(OutFile,"Load Vector, F:\n"); 
for(element=1;element<=e;element++) 
{ 
 printf("f[%d]=\n",element); 
 fprintf(OutFile,"f[%d]=\n",element); 
 for(i=1;i<=e+1;i++) 
 {  
  if(i==element || i==element+1) 
 
 f[element][i]=(Area[element]*l*0.2836)/2; 
  else 
  f[element][i]=0; 
  printf("%15lf\n",f[element][i]); 
  fprintf(OutFile,"%15lf\n",f[element][i]); 
 } 
 printf("\n"); 
 fprintf(OutFile,"\n"); 
} 
printf("Global Load Vector, F:\n"); 
fprintf(OutFile,"Global Load Vector, F:\n"); 
for(i=1;i<=e+1;i++) 
{  
 for(element=1;element<=e;element++) 
 {  
  if(i==e+1 && element==e) 
  GLV[i] = f[element][i]+F; 
 }  
} 
for(i=1;i<=e+1;i++) 
{ 
 printf("%20lf\n",GLV[i]);  
 fprintf(OutFile,"%20lf\n",GLV[i]); 
} 
printf("\n"); 
fprintf(OutFile,"\n"); 
printf("Displacement, u:\n"); 
fprintf(OutFile,"Displacement, u:\n"); 
for(i=1;i<=e+1;i++)  
 u[i][0]=0; 
double j1=TOLERANCE,dif[30];  
for(itr=1;(itr <= TIMESTEP)&&(j1>=TOLERANCE);itr++) 
{  
       for(element=1;element<=e+1;element++) 
      { 
      { 
 for(j=1;j<=element-1;j++) 
 sum1 += GSM[element][j]*u[j][itr]; 
 for(j=element+1;j<=e+1;j++) 
 sum2 += GSM[element][j]*u[j][itr-1]; 
 u[element][itr] = (GLV[element]-sum1-
sum2)/GSM[element][element]; 
 } 
 { 
 for(j=1;j<=element-1;j++) 
  sum1 += GSM[element][j]*u[j][itr]; 
 for(j=element+1;j<=e+1;j++) 

  sum2 += GSM[element][j]*u[j][itr-1]; 
 u[element][itr] = (GLV[element]-sum1-
sum2)/GSM[element][element]; 
 } 
 printf("u[%d][%d]= 
%.15lf\n",element,itr,u[element][itr]); 
 fprintf(OutFile,"u[%d][%d]= 
%.15lf\n",element,itr,u[element][itr]); 
 } 
 printf("\n"); 
 fprintf(OutFile,"\n"); 
 j1=0.0; 
 for(element=1;element<=e+1;element++) 
 { 
  dif[element]=fabs(u[element][itr]-
u[element][itr-1]); 
  j1=(dif[element]>j1) ? dif[element] : j1; 
 }  
} 
printf("Overall extension is %.15lf\n\n",u[element-1][itr-1]); 
fprintf(OutFile,"Overall extension is %.15lf\n\n",u[element-
1][itr-1]); 
for(element=1;element<=e;element++) 
{ 
 Delu[element]=u[element+1][itr-1]-u[element][itr-
1]; 
 strain=Delu[element]/l; 
 stress[element]=E*strain; 
} 
printf("The axial stress in each element is:\n"); 
fprintf(OutFile,"The axial stress in each element is:\n"); 
for(element=1;element<=e;element++) 
{ 
      printf("stress[%d]= %15.15lf\n",element,stress[element]); 
     fprintf(OutFile,"stress[%d]= 
%15.15lf\n",element,stress[element]); 
} 
printf("\n"); 
fprintf(OutFile,"\n"); 
gettimeofday(&tv2,(struct timezone*)0); 
dt1 = tv2.tv_sec-tv1.tv_sec; 
dt2 = tv2.tv_usec-tv1.tv_usec; 
if(dt2<0) 
{ 
 dt--; 
 dt2 = 1000000 +dt2; 
} 
printf("time=%d06%d\n"dt1,dt2); 
fclose(OutFile); 
________________________________________ 
 
3 Parallel Computation 
Parallel Computing becomes an essential and 
vital problem solving standard for several 
computationally intensive applications, such 
as image processing, robotics, fracture 
mechanics [10]. The Parallel Virtual Machine 
(PVM) is a software tool for parallel 
networking of computers. It is designed to 
allow a network of heterogeneous machines 
to be used as a single distributed parallel 
processor. Such approach has proven to be a 
viable and cost-effective technology for 
parallel computing in many application 
domains [5]. The PVM system has gained 
widespread acceptance in the high-
performance computing community. 
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High-performance computing (HPC) is a 
term that arose after the term 
“supercomputer”. The term HPC refers to the 

use of parallel computers – that is computing 
systems comprised of multiple processors  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 Flow chart of parallel algorithm 
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linked together in a single system with 
commercially available interconnects [13]. 
The requirements of engineers and scientist 
for ever more powerful digital computers 
have been the main driving force in the 
development of digital computers [6]. 
Parallel Algorithm 
According to [5], the performance of a 
parallel algorithm is assessed primarily by the 
following three factors: 
i. Computing time (Time Complexity). 
ii. Number of processors required (Processor 

Complexity). 
iii. Model of the machine required. 
 
There are some frequently used terms in 
parallel computing [5]: 
1. Speedup: Wall-clock time of best serial 
execution divided by wall-clock time of 
parallel execution, also known as parallel 
speedup. 

Speedup = 
p

s
T
T

                  (1) 

where  
sT  = execution time for a single processor 

pT  = execution time using p parallel 
processors 
2. Efficiency: The efficiency is a measure of 
hardware utilization, equal to the ratio of 
speedup achieved on p processors to p itself. 

Efficiency = 
p

Speedup
  (2) 

3. Effectiveness: The effectiveness is used to 
calculate the speedup and the efficiency. It 
also can be said that the efficiency of a 
parallel program divided by the execution 
time. 

Effectiveness = 
ppT

Speedup
 (3) 

4. Temporal performance: Temporal perfor-
mance is a parameter to measure the 
performance of a parallel algorithm. 

Temporal = 
pT

1
    (4) 

5. Scalability: A parallel system’s ability to 
gain proportionate increase in parallel 
speedup with the addition of more 
processors. 
 
 

4  The Discretization of Crack  
     Propagation 
Fracture mechanics is used to investigate the 
failure of brittle materials, which is to study 
material behaviour and design against brittle 
failure [7]. These failures arise as a 
consequence of unstable crack propagation 
from a pre-existing defect owing to material 
processing or fabrication [8]. 
The engineering study of fracture mechanics 
does not emphasize how a crack is initiated; 
the goal is to develop methods of predicting 
how a crack propagates, that is, how it 
lengthens [9]. The study of fracture therefore 
focuses primarily on the lengthening of a 
crack, and the resultant growth in surface 
area, as the load on the body is increased [12].  
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 2 One-Dimension Rod Element 
 
Consider an element of length l of a bar 
subjected to an axial force as shown in figure 
2. We know that the extension of the element 
is given by: 

AE
dxFud =  ⇒  

AE
F

dx
ud
=  (5) 

where ud  is the extension of an element of 
length dx due to force, F. E and A are the 
Young’s Modulus and constant cross 
sectional area of the element respectively. If 

F is constant over the element then 0=
dx
dF

. 

Hence equation (5) becomes 

02

2
=

dx
udAE     (6) 

Equation (6) is the governing equation for an 
axial element. Integrating over the length l, 
we get 

1C
dx
udAE =                      (7) 

21 CxCuAE +=                  (8) 

l

T T node i node j (e) 

ui uj 

if̂ jf̂x 
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Now, at ii uuxx == ,  and jj uuxx == , , 
we have 

21 CxCuAE ii +=                (9) 

22 CxCuAE jj +=             (10) 
from which 

( )
( ) ( )ij

ij

ij uu
l

AE
xx

uuAE
C −=

−

−
=1  

iuAEC =2  

Therefore, ( ) iuAExuu
l

AEuAE +−= 12  

or ( ) iij u
l
xuuu +−=            (11) 

After differentiation, we find from equation 
(11) 

( )
l

uu
dx
du ij −=                   (12) 

At ixx =  →  

( )
l

uu
AE

dx
duAEf ij

x
i

i

−
−=⎟

⎠
⎞

⎜
⎝
⎛−=  

At jxx =  →  

( )
l

uu
AE

dx
duAEf ij

x
j

j

−
=⎟

⎠
⎞

⎜
⎝
⎛=  

The above can be expressed in matrix 
notation as 

⎭
⎬
⎫

⎩
⎨
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⎡
−

−
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Finally, take 

[ ] ⎥
⎦

⎤
⎢
⎣

⎡
−

−
=

11
11

l
AEK  

Then 
[ ]{ } { }FuK =                     (13) 

where 
[ ]K  = element stiffness matrix 

)(

1

e
E

e

k∑
=

=  

{ }F  = vector force 

)(

1

e
E

e
F∑

=
=  

{ }u  = constantly incremental displacement 
for border condition 

To obtain{ }u , we may use one of the 
numerical method, i.e. Gauss-Seidel Method 
[14]. 
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l
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=

+
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1
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∀ i = 1, 2, … n              (14) 
After obtained the displacement, )(eu  we 

can proceed to find the axial stress in each 
element, e. 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

=

l
uu

E

E

ij

x
e

x εσ )(

             (15) 

The problem is solved by using the method 
discussed in section 2 and by using C 
programming and PVM as the platforms. 
 
5 Numerical Analysis and Result 
Based on the algorithm in Fig. 1, the 
solutions obtained are illustrated graphically 
with three different e  to shown the stress-
strain relationship between each node as well 
as each element. 
According to Table 1, the relation between 
force applied to the element and stress 
generated can be concluded as: The axial 
stress is directly proportional to strain while 
strain is related to nodal displacement; such 
that: 
and                    communication and 

computational ratio  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

l
uu ij

xε  

 
Table 1 Three different of discretization of the rod 
element for the analysis of one-dimensional continuum 

Length 
(m) 

Width 
(m) 

Force 
(N) 

No. of 
element  

(e) 
10 2 100 5 
10 2 100 10 
10 2 100 15 

 
Time execution for each different number of 
discretization of the domain increasing as the 
number of element discretises increase. 
Computational complexity is determined 
through the algorithm develop and shown as 
below: 
Complexity = (number of operators used) × 

xx εασ
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(number of iteration, k) 
= 31 × k 
= 31k 
 
Table 2 Time Execution for 1 CPU of three types 
number of element, e. 

Number of 
Element, E 

Time Execution for 1 
CPU (sec.) 

5 6.17E-03 
10 6.32E-03 
15 6.43E-03 

 
6 Parallel Performance analysis 
Based on the numerical results obtained, the 
performance measurements of parallel 
computing were analyzed from the aspect of 
time execution, speedup, efficiency, 
effectiveness and temporal performance. Fig. 
2 is the time execution in second for 6 types 
of number of processors – 1, 4, 8, 12, 16 and 
20. According to the graph, the time executes 
decreasing while the number of processors 
increases. This is because the task from the 
master had been divided into small parts to 
the slave. The more processors used means 
the more slaves the master can to divide the 
task. Thus as the number of processors 
increase, the time execute decrease. 
Speedup: One way of judging the 
performance of an algorithm is to measure its 
speedup. This is because we are usually 
concerned to know about the performance 
gains from the algorithm over a similar 
algorithm run on a serial computer. Table 3 
shows the speedup from the different number 
of processors. 
 
 
 
 
 
 
 
 
 

 
 

 
From Fig. 4, we can see that as the number of 
processor increase, the speedup of the 
parallel algorithm also increasing. The results 
can be concluded as valid because in reality, 
when the more processors we used, the faster 
the calculation will performance. 

Efficiency: The efficiency is used to judge 
how effective a parallel algorithm is. By 
formula (2), efficiency is measure through 
the fraction of time that a processor spends 
performing useful work. Table 4 shows the 
efficiency of the algorithm developed. 
 
 
 
 
 
 
 
 
 
 

 
From the graph in Fig. 5 it shows that, while 
the number of processors increase, the 
efficiency of the parallel algorithm 
decreasing and all of them are less than 1 due 
to the communications involved within the 
processors. Following the equation (2), the 
speedup is increasing while the numbers of 
processors are also increase, thus the 
efficiency of the parallel algorithm 
decreasing. 
Effectiveness: The efficiency of a parallel 
program divided by the execution time is 
known as the effectiveness of the parallel 
algorithm. Table 5 shows the effectiveness of 
the parallel algorithm developed. 
 

 
 
 
 
 
 
 
 
 
 
 

 
Fig. 6 shows the effectiveness of the parallel 
algorithm versus the number of processors. 
As the number of processors increase, the 
effectiveness are also increase but in this 
study, the effectiveness of the parallel 
algorithm decreasing when the number of 
processors exceeds twelve. This might be due 
to the communication problems within the 
processors. 

 

Table 3 Time Execution and speedup of different 
number of processors 

No. of 
Processors 

Time Execution 
(sec.) 

Speedup 

1 60.660402 1 
4 18.065915 3.357726525 
8 10.629508 5.706793014 

12 6.819884 8.894638384 
16 6.524762 9.296952441 
20 6.271058 9.673073029 

 

Table 4 Efficiency of the parallel algorithm 
No. of 

Processors 
Time Execution 

(sec.) 
Efficiency 

1 60.660402 1 
4 18.065915 0.839431631 
8 10.629508 0.713349127 

12 6.819884 0.741219865 
16 6.524762 0.581059528 
20 6.271058 0.483653651 

Table 5 Effectiveness of the parallel algorithm. 
No. of 

Processors 
Time 

Execution 
(sec.) 

Effectiveness 

1 60.660402 0.016485219 
4 18.065915 0.046464939 
8 10.629508 0.067110268 
12 6.819884 0.108685113 
16 6.524762 0.089054517 
20 6.271058 0.077124729 
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Temporal Performance: Temporal 
performance also used to analysis the 
performance of the parallel algorithm. Table 
6 shows the temporal performance of the 
parallel algorithm developed in this research. 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7 shows that, the temporal performance 
are increasing while the number of processors 
increases. This is because of the decreasing 
of the execution time as the number of 
processors used increasing. 
After running the parallel computing based 
on 1, 4, 8, 12, 16 and 20 numbers of CPU, 

the parallel performance analyzed from the 
aspect of time execution, speedup, efficiency, 
effectiveness and temporal performance can 
be conclude as achieving the target of using 
parallel algorithm – to solve much larger 
problems at minimal time and by the same 
time increase the performance of the 
calculation. 
The results have proven that parallel 
algorithm is better than the sequential 
algorithm or in other words, we can say that 
it is better than using a single processor. The 
computation of FEM is well suite in parallel 
algorithm because it involve in large scale of 
matrices and load vectors.  
In this study, a C-programme as well as the 
PVM code has constructed to solve the 
problem. From the analysis of the 
performance of PVM, it has shown that the 
parallel computation using multi-processor is 
more efficient than the sequential 
computation using one processor in one PC 
while the parallel algorithm is used in order 

 

0

0.02

0.04

0.06

0.08

0.1

0.12

0 5 10 15 20 25

No. of processor(s)

Ef
fe

ct
iv

en
es

s

Effectiveness
 

Fig. 6 Analysis of effectiveness for the different number of processors. 

Table 6 Temporal performance of the parallel 
computer 

No. of 
Processors 

Time Execution 
(sec.) 

Temporal 
Performance 

1 60.660402 0.016485219 
4 18.065915 0.055352856 
8 10.629508 0.094077732 

12 6.819884 0.14663006 
16 6.524762 0.153262295 
20 6.271058 0.159462725 
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Fig. 7 Analysis of temporal performance for six different numbers of processors. 
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to analyze the performance of the algorithm 
developed.  
 
7 Conclusion 
The finite element method is broadly used to 
analyze most engineering science problems 
[11]. In this study, we concern with the 
application of the finite element method to 
the calculation of the elastic stress and strain 
distribution in loaded bodies to solve the 
deformation problem. In this study, we have 
implemented the analysis of one-dimensional 
continuum in sequential algorithm using C-
programming as well as the parallel 
algorithm using PVM. The solutions that will 
be obtained from parallel algorithm are 
expected to be more accurate and better than 
the result from sequential algorithm. Based 
on the numerical results and parallel 
performance evaluations, it’s confirmed that 
parallel algorithm is an efficient solution of 
crack propagation prediction. The 
relationship between the applied force to the 
individual elements and the nodal 
displacement involved setting up the 
elements’ stiffness matrices. Finite element 
methods are an alternative approach instead 
of finite difference discretization in terms of 
accurate prediction of crack propagation 
problem.  
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