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Abstract: Optimization of process variables in the bioconversion of pretreated sugarcane bagasse using cellulase and Saccha-
romyces cerevisiae by Simultaneous Saccharification and Fermentation (SSF) was investigated in the present study. A 23 five
level Central Composite Design (CCD) experiments with central and axial points were used to develop a statistical model for
the optimization of process variables, e.g. incubation temperature , pH and fermentation time. Data obtained from Response
Surface Methodology (RSM) on ethanol production were subjected to the analysis of variance (ANOVA) and analyzed using
a second order polynomial equation and the contour plots were used to study the interactions among three relevant variables
of the fermentation process. Experiments were carried out using an online monitored modular fermenter of 2 L capacity under
aerobic condition. The processing parameters setup for reaching a maximum response for ethanol production (4.80 g/l) was
obtained from 50 g/l pretreated sugarcane bagasse when applying the optimum values for temperature (35◦C), pH (5.5) and
fermentation time (114 h). Various kinetic models such as Monod, Modified Logistic model, Modified Logistic incorporated
Leudeking-Piret model and Modified Logistic incorporated Modified Leudeking-Piret model have been evaluated and the
constants were predicted.
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1. Introduction

Cellulosic biomass is an alternate source of energy since
it is renewable and available throughout the globe in large
quantities. Ethanol, as an alternate energy, is one of
the largest volumes that can be produced from cellulosic
biomass. Ethanol was formerly used mainly to increase
the octane level and improve the emissions quality of gaso-
line, but today is increasingly being used as a partial or to-
tal replacement for gasoline in cars and other road vehicles.
Therefore, with the expectation of supply shortfalls in future
from non-renewable fossil fuels, the production of fermen-
tatively produced bio-alcohols from low-cost biomass such
as cellulosic wastes to meet energy demands is an attrac-
tive alternative [1]. Cellulosic biomass for ethanol produc-
tion needs pretreatment via liquefaction and saccharification.
Over the past decades, emphasis has been placed on enzy-
matic hydrolysis of cellulosic biomass to fermentable sugar.
However, the process has been hampered by economic prob-
lems such as high costs of biomass pretreatment and cellu-
lase production [2].

One of the major lignocellulosic materials to be consid-
ered in tropical countries is sugarcane bagasse, the fibrous
residue obtained after extracting the juice from sugar cane
(Saccharum officinarum) in the sugar production process.
Sugarcane bagasse is accumulated in large quantities at cane-
to-sugar processing plants and consists approximately of
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50% cellulose, 25% hemicellulose, and 25% lignin [3, 4].
Lignin forms a protective shield around cellulose and hemi-
cellulose, protecting the polysaccharides from enzymatic
degradation. To convert the biomass into ethanol, the cellu-
lose must be readily available for cellulase enzymes. Thus,
by removing the lignin, the cellulose becomes vulnerable to
enzymes and allows the yeast to convert the glucose into
ethanol during fermentation. Therefore, a pretreatment must
be applied to degrade the lignin in the sugarcane residue,
decrease cellulose crystallinity, and increase the surface area
for enzymatic activity [5]. Enzymatic hydrolysis is a promis-
ing way for obtaining sugars from lignocellulosic materials
(because it has the advantages of reduced sugar loss through
side-reactions, is milder and more specific). However, low
enzymatic accessibility of the native cellulose is a key prob-
lem for biomass-to-ethanol processes [6, 7].

The bagasse produced is traditionally utilized for in-house
energy production. The cellulose conversion option that
many currently favor is the Simultaneous Saccharification
and Fermentation (SSF) process. In this option, the cellulose
hydrolysis and glucose fermentation steps are combined in
a single vessel. Since cellulase is inhibited by glucose as it
is formed [8], rapid conversion of the glucose into ethanol
by yeast results in faster rates, higher yields, and greater
ethanol concentrations than possible for SSF. The presence
of ethanol in the fermentation broth also makes the mixture
less vulnerable to invasion by unwanted microorganisms. In
practice, yeast has shown higher yields and ethanol tolerance
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than bacteria [9].
The classical method of studying one variable at a time can

be effective in some cases but it is useful to consider the com-
bined effects of all the factors involved. The Response Sur-
face Methodology (RSM), based on statistical principles, can
be employed as an interesting strategy to implement process
conditions that drive to optimal ethanol production from pre-
treated sugarcane bagasse by performing a minimum number
of experiments. RSM experimental design is an efficient ap-
proach to deal with a large number of variables and there
are several reports on application of RSM for the production
of primary and secondary metabolites through microbial fer-
mentation [10, 11]. In the present study, the potential use
of sugarcane bagasse for ethanol fermentation using cellu-
lase and yeast Saccharomyces cerevisiae was investigated.
The influence of process variables such as incubation tem-
perature, initial pH and fermentation time on ethanol pro-
duction from pretreated sugarcane bagasse was studied us-
ing CCD experiments. Knowledge based approaches such
as Artificial Neural Network (ANN) has been successfully
applied for the purpose of simulation on the same experi-
mental data used for RSM. Various kinetic models such as
Modified Logistic model (for growth kinetics), Modified Lo-
gistic incorporated Leudeking-Piret model (for product for-
mation kinetics) and Modified Logistic incorporated Modi-
fied Leudeking-Piret model (for substrate utilization kinet-
ics) have been evaluated.

2. Materials and Methods

2.1. Materials

Sugarcane bagasse sample was obtained from M.R.K.
Sugar Mills Ltd. Sethiyathope, Tamilnadu, India. The
bagasse sample was made into 100 mesh (0.15mm) fine pow-
der by use of laboratory blender at 3000 rpm. Sample was
preserved in a sealed plastic bag at 4◦C to prevent any possi-
ble degradation or spoilage. Pure cellulose powder was used
in reference of cellulose estimation and fermentation tests.
The control and pretreated bagasse samples were analyzed
for cellulose content using Anthrone reagent at 630 nm in
UV/Visible spectrophotometer ELICO BL 198 [12]. The es-
timated cellulose content of steam pretreated sample was 420
mg/g bagasse.

2.2. Microorganisms and culture conditions

Commercially available cellulase enzyme (ONOZUKA
R-10) was obtained from HIMEDIA Laboratories, Mumbai.
The activity of enzyme was found to be 15 FPU/ml and it was
used throughout the experimentation. The cellulase activ-
ity was measured by standard Mandel’s method [13]. Yeast
strain Saccharomyces cerevisiae was obtained from Micro-
bial Culture Collection and Gene Bank (MTCC), Institute
of Microbial Technology (IMTECH), Chandigarh, INDIA.
Culture was maintained on yeast extract agar medium. Af-
ter three days incubation at 25◦C the agar slants were stored
at 4◦C. The liquid medium for the growth of inoculum for
yeast was yeast extract - glucose nutrient medium composed

of 3g/l of yeast extract, 1g/l of sodium chloride, 10g/l of glu-
cose, 2g/l of potassium dihydrogen phosphate, 0.2g/l of cal-
cium chloride, 1.7g/l of magnesium sulphate.

Inocula were grown aerobically in 250 ml Erlenmeyer
flasks containing the above mentioned medium at 25◦C in an
Environmental Shaker (Remi Scientific) at 200 rpm for 24 h.
Active cells were centrifuged in a clinical centrifuge (1200
rpm), washed with sterile water, and were used as inocu-
lum. Fermentations for ethanol production were conducted
aerobically in an online monitored modular fermenter 2L ca-
pacity with a working volume of 1000ml medium. Samples
were withdrawn periodically (12 h interval) for the analysis
of cellmass, ethanol and residual sugar concentrations.

2.3. Steam pretreatment
Steam pretreatment was carried out for the milled sugar-

cane bagasse in an autoclave at 15 psi (121◦C) for about 60
minutes. The treated sample was collected and filtered in
crucibles followed by washed with distilled water under suc-
tion. Finally it was dried at room temperature before fermen-
tation [14, 15].

2.4. Fermentation
Batch experiments were conducted as per the CCD for

ethanol production in a fermenter (APPLIKON Biotech ADI
1025, Holland), with 2 L capacity, equipped with flat blade
impeller, oxygen and pH electrodes, temperature and DO
(dissolved oxygen) probe. The equipment also monitored
temperature, agitation speed, gas purging flow rate, pump-
ing rates, antifoam addition, DO and the vessel level. All
processing parameters were online monitored, with the aid
of BioXpert Lite 1.00 software. The agitation speed (400±1
rpm) and DO (8±0.1 ppm) were kept constant during the ex-
periments. Parameters, like temperature, pH and fermenta-
tion time, were chosen as the most significant ones, consid-
ering the experimental design. After selecting those param-
eters, experiments were done in duplicate, for superior (+)
and lower (-) levels of the experimental design, and in trip-
licate, for the central point (0). The process was conducted
at the initial substrate concentration of 50g/l (pretreated sug-
arcane bagasse) with the addition of nutrient medium (with-
out glucose) and 0.05 M Sodium phosphate buffer (pH 5.7)
followed by sterilization for 15 min, at 15 psi (121◦C). Cel-
lulase dosage of 15 FPU/g bagasse was used for hydrolysis.
For each experiment, 10ml of the inoculum was used, that is,
10% (v/v) of the initial working volume (1 L). Samples were
withdrawn periodically (12 h interval), centrifuged in a lab-
oratory desktop centrifuge at 1200 rpm, and the supernatants
were analyzed for total sugars and ethanol concentrations.

2.5. Cell growth and chemical analysis
The sugarcane bagasse sample was analyzed for hemicel-

lulose and Klason lignin content following the procedures
described in NREL Standard Procedure (No.002). Cellmass
was determined by direct optical density at 660 nm using
SYSTRONICS colorimeter (420 - 820 nm). Total reduc-
ing sugar was measured by the Dinitrosalicylic acid (DNS)
method using a UV/Visible spectrophotometer ELICO BL



Chemical Engineering Research Bulletin 14(2010) 19-35 / Elumalai and Thangavelu 31

198 at 510 nm [16]. Ethanol was estimated using NU-
CON 5765 Gas Chromatography (GC) with a Flame Ioniza-
tion Detector (FID) and CHROMATOPAK (10% Carbowax
20M) column (3m length and 1/8 mm dia) using N2 as the
carrier gas at the rate of 20 µL per minute. The oven tem-
perature was held at 80◦C. The injector and detector temper-
ature was maintained at 200◦C. Ethanol concentration of the
sample was obtained directly by using WINACDS software
version 6.2.

2.6. Experimental design and statistical analysis
In the Central Composite Design (CCD), the total number

of experimental combinations was 2K + 2K + n0, where K is
the number of independent variables and n0 is the number of
repetitions of the experiments at the central point, which in-
dicated that 20 experiments were required for this procedure.
The CCD contains a total of 20 experiments with five level
full factorial design and replications of the central points and
axial points . The dependent variable selected for this study
was ethanol concentration, Y (g/l). The independent vari-
ables chosen were incubation temperature X1, pH X2 and
fermentation time X3. A mathematical model, describing the
relationships among the process dependent variable and the
independent variables in a second-order equation, was de-
veloped [17]. Design-based experimental data were matched
according to Equation 1 .

Y = b0 +

k∑
i=1

bixi +

k∑
i=1

bi jx2
i +

k∑
i< j

k∑
j

bi jxix j + e (1)

where, i, j are linear, quadratic coefficients, respectively, xi,
x j are the dimensionless value of an independent variables,
while b is regression coefficient, k the number of factors stud-
ied and optimized in the experiment and e is random error.

The quality of fit of the second order equation was ex-
pressed by the coefficient of determination R2, and its sta-
tistical significance was determined by F-test. The signif-
icance of each coefficient was determined using Student’s
t-test. The student t-test was used to determine the sig-
nificance of the parameters regression coefficients. The P-
values (Probability value) were used as a tool to check the
significance of the interaction effects, which in turn may in-
dicate the patterns of the interactions among the variables.
In general, larger magnitudes of t and smaller of P, indi-
cates that the corresponding coefficient term is significant.
The coefficients of the equation were determined by em-
ploying MINITAB software version 15. Analysis of vari-
ance (ANOVA) for the final predictive equation was done us-
ing the same software package. The response surface equa-
tion was optimized for maximum yield in the range of pro-
cess variables using MATLAB software version 7.0.1. Isore-
sponse contour plots were obtained based on the effect of
the levels of three parameters (at five different levels each)
and their interactions on the yield of ethanol by keeping the
other parameters at their optimal concentrations. From these
contour plots, the interaction of one parameter with another
parameter was studied. The optimum concentration of each
parameter was identified based on the hump in the contour
plots.

2.7. ANN modeling

Knowledge-based approaches such as ANN have been
successfully applied to modeling and control of various bio-
logical processes in recent years. ANN represents the non-
linearities better than the RSM does. ANN cannot produce a
model equation similar to RSM but it works as human brain
and it estimates the response based on the trained data in
the investigated range. The first step in implementing a neu-
ral network modeling approach is to design the topology of
the network. A number of design parameters affect perfor-
mance and these parameters include the choice of activation
function and training algorithm, training parameters such as
learning rate and momentum, number of hidden layers, num-
ber of neurons in each hidden layer, initial weights, and train-
ing duration. In general, feed-forward neural networks with
one hidden layer containing a sufficiently large number of
hidden neurons have been shown to be capable of providing
accurate approximations to any continuous nonlinear func-
tion [18, 19].

The choice of design parameters for a neural network is
thus often the result of empirical rules combined with trial
and error as detailed. The configuration of the two neural
networks developed in this work were 3-5-1 structure: three
input neurons are incubation temperature (◦C), initial pH and
fermentation time (h)-five neurons in one hidden layer-one
output neuron and are determined after brief experimenta-
tion. To avoid the problem of overtraining, the data set com-
prising 20 experimental runs is split into two categories: a
training set comprising 17 experimental runs is used to op-
timize the weights of the two neural networks and a valida-
tion set comprising 3 experimental runs is used to evaluate
their predictive capability . Since empirical models like neu-
ral networks do not extrapolate data well, data for network
training should be selected carefully if the best results are
to be achieved. In this study the data selected for network
training covered the lower and upper bounds of the one out-
put neurons (y1).

3. Results and Discussion

3.1. Optimization of process variables in ethanol fermenta-
tion

The experimental results associated to the processing set
up of each independent variable are listed in Table 1. Five
level central composite design matrix and the experimental
responses of the dependent variable (ethanol concentration)
are listed in Table 2. The regression equation coefficients
were calculated and the data is fitted to a second-order poly-
nomial equation. The response, Y (ethanol concentration)
by S.cerevisiae, can be expressed in terms of the following
regression Equation 2:

Y = 3.4584 − 0.2212x1 − 0.2657x2 + 0.4144x3 − 0.5128x2
1

−0.3784x2
2 − 0.4208x2

3 + 0.1838x1x2 + 0.0983x1x3

+0.0485x2x3

(2)
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Table 1: Codes and actual levels of the independent variables for design of
experiment

Independent variables Symbols Coded levels
1.682 1 0 +1 +1.682

Temperature (◦C) X1 26.6 30 35 40 43.4
pH X2 5.2 5.5 6 6.5 6.9
Fermentation time (h) X3 31.6 48 72 96 112.3

Table 2: Five level factorial central composite design and the experimental
responses of dependent variable, Y (ethanol concentration, g/l)

Run Coded levels Real variables Ethanol conc. (g/l)
No. x1 x2 x3 X1 X2 X3 Exp Predicted

(RSM) (ANN)
1 0 0 0 35 6 72 3.9 3.92 3.95
2 1 -1 -1 40 5.5 48 1.54 1.62 1.6
3 -1 -1 1 30 5.5 96 3.54 3.58 3.61
4 1 1 -1 40 6.5 48 1.37 1.43 1.45
5 0 0 0 35 6 72 3.9 3.92 3.95
6 0 -1.682 0 35 5.2 72 3.08 2.98 3.18
7 -1 -1 -1 30 5.5 48 2.91 2.85 3.12
8 0 0 0 35 6 72 3.9 3.92 3.95
9 1.682 0 0 43.4 6 72 2.2 1.95 1.95

10 0 0 1.682 35 6 112.3 3.96 3.75 4.13
11 -1.682 0 0 26.6 6 72 2.62 2.7 2.68
12 -1 1 1 30 6.5 96 2.55 2.58 2.6
13 -1 1 -1 30 6.5 48 1.78 1.7 1.71
14 0 0 0 35 6 72 3.9 3.92 3.95
15 1 1 1 40 6.5 96 2.75 2.92 2.88
16 1 -1 1 40 5.5 96 2.78 2.96 2.92
17 0 0 0 35 6 72 3.9 3.92 3.95
18 0 0 0 35 6 72 3.9 3.92 3.95
19 0 1.682 0 35 6.9 72 2.04 1.97 2.01
20 0 0 -1.682 35 6 31.6 1.84 1.88 1.89

Besides the linear effect of the ethanol concentration, Y
g/l, the response surface method also gives an insight about
the parameters quadratic and combined effects. The analyses
were done by using both Fisher’s F-test and Student t-test
statistical tools. The regression coefficient, t and P values
for all the linear, quadratic and combined effects with a 95%
significance level are given in the Table 3. It shows that the
regression coefficients of the linear term X3, and all quadratic
coefficients of X1, X2 and X3 were significant at < 1% level
(p < 0.001 for all) and the interaction coefficients were of
less significant (p < 0.005). The statistical significance of the
ratio, between the mean square variation, due to regression,
and the mean square residual error, was tested using analysis
of variance (ANOVA).

Table 3: Results of regression analysis and corresponding t and P value of
second order polynomial model for optimization of ethanol production

Term Regression Standard t-statistics P-value
Constant coefficient deviation
Intercept 3.9246 0.05952 65.933 < 0.001

X1 0.2231 0.03949 5.648 < 0.001
X2 0.2980 0.03949 7.544 < 0.001
X3 0.5554 0.03949 14.064 < 0.001

X1X1 0.5639 0.03845 14.667 < 0.001
X2X2 0.5108 0.03845 13.287 < 0.001
X3X3 0.3906 0.03845 10.161 < 0.001
X1X2 0.24 0.0516 4.651 < 0.001
X1X3 0.1525 0.0516 2.955 0.014
X2X3 0.035 0.0516 0.678 0.513

R2 = 0.987; Adjusted R2 = 0.974

ANOVA is a statistical technique that subdivides the total
variation of a set of data into component associated to spe-
cific sources of variation. The regression equation obtained
form the ANOVA shows (Table 4) that the R2 (coefficient of
determination) was 0.951 (a value > 0.75 indicates fitness

of the model). This is an estimate of the fraction of overall
variation in the data accounted by the model, and thus the
model is capable of explaining 95.1% of the variation in the
response. The ’adjusted R2’ is 0.907, which indicates that
the model is good (for a good statistical model, the R2 value
should be in the range of 0 to 1.0, and the nearer to 1.0 the
value is, the more fit the model is deemed to be). ANOVA of
the regression model for ethanol yield demonstrated that the
model was significant due to an F-value of 32.74 and a very
low probability value (P model > F − 0.001).

Table 4: ANOVA for the fitted quadratic polynomial model for ethanol pro-
duction

Sources of Sum of Degrees of Mean square F-value P-value
variation squares freedom (DF) (MS)
Regression 15.6195 9 1.7355 81.48 < 0.001
Linear 6.1051 3 2.035 95.54 < 0.001
Square 8.8578 3 2.9525 138.62 < 0.001
Interaction 0.6567 3 0.2188 10.28 0.002
Residual Error 0.213 10 0.0213 - -
Lack-of-Fit 0.213 5 0.0426 - -
Pure Error 0 5 0 - -
Total 15.8325 19 - - -

The response surfaces can be used to predict the optimum
range for different values of the test variables and the major
interactions between the test variables can be identify from
the circular or elliptical nature of the contours. The circular
nature of the contours signify that the interactive effects be-
tween the test variables are not significant and optimum val-
ues of the test variables can be easily obtained. Figures 1-3
show the isoresponse contour plots of the interactive effect of
incubation temperature, initial pH and fermentation time on
ethanol production. The response values for the variables can
be predicted form these plots. The effect of incubation tem-
perature and pH on ethanol production, while other variable
(fermentation time) was fixed at central level (96 h), is shown
in Figure 1. According to Figure 1, the contours around the

Figure 1: Isoresponse contour plot for the effect of incubation temperature
versus initial pH on ethanol production

stationary point were elliptical and it became elongated more
and more along the temperature axis, which meant that a
small change of the response value would require a small
move along the temperature axis. It was evident that the
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ethanol concentration steadily decreased with increasing in-
cubation temperature upto 45◦C and at low pH level. While
at high temperature, the increase in the response value was
negligible with as the pH value was increased. So a lower
temperature and lower pH value enhance the ethanol yield.
The significant interaction between incubation temperature
and initial pH were apparent not only from the elliptical na-
ture of the contour plot, but also from the low probability
value (P value is 0.028; since the P value for the interaction
effects were < 5% level) (Table 3). The other pair of the inde-
pendent variables incubation temperature and fermentation
time shows a less interactive effect (Figure 2) while keeping
the third independent variable, initial pH at 6.0. From Fig-

Figure 2: Isoresponse contour plot for the effect of incubation temperature
versus fermentation time on ethanol production

ure 2, it was evident that the interactive effects between the
test variables were less significant not only from the circular
nature of the contour plot and also from the high probability
value (P-0.520). Then the optimum values of the test vari-
ables can be easily obtained form this type of circular con-
tour plot. Figure 3 show the similar effect, that the variables
initial pH and fermentation time show a less interactive effect
in the ethanol fermentation while keeping the third variable
incubation temperature as constant at 35◦C and found that
the test variables were less significant. The results show that
as the values of process variables increased, the yield also in-
creased but only up to the midpoint of range of variables and
thereafter the yield decreased even though the values of vari-
ables increased. The ethanol yield is significantly affected
by incubation temperature and initial pH than other pair of
variables in the ethanol fermentation by SSF process.

The matching quality, of the data obtained by the model
proposed in Equation 2, was evaluated considering the corre-
lation coefficient, R2, between the experimental and modeled
data. The mathematical adjust of those values generated a
R2 = 0.95, revealing that the model would explain very well
95% of the overall effects and only 5% was not explained.
In ANN modeling the R2 value between the experimental
and predicted responses is determined as 0.985, revealing
that the model could not explain only 1.5%. The increase
in the number of experimental points in training the data set

Figure 3: Isoresponse contour plot for the effect of initial pH versus fermen-
tation time on ethanol production

improved the network’s performance. From equations de-
rived by differentiating Equation 2, the optimum values for
the independent variables obtained were incubation tempera-
ture 32◦C, pH 5.6 and fermentation time 110 h. Based on the
model, the optimal working conditions were obtained to at-
tain high ethanol yield. Response analysis revealed the max-
imum ethanol concentration (4.80 g/l) by S. cerevisiae could
be achieved at the optimum process conditions.

3.2. Kinetics and modeling
3.2.1. Modified Logistic model (growth)

Under optimal growth conditions and when the inhibitory
effects of substrates and product play no role, the rate of cell
growth is given by Equation 3

dX
dt

= µ0Xt (3)

where µ0 is a constant defined as the initial specific growth
rate and Xt is the cellmass concentration at time t. The lo-
gistic model equation implies that the growth rate increases
with increase in cellmass concentration and is independent
of the substrate concentration. In reality the growth of cell is
governed by a hyperbolic relationship and the logistic Equa-
tion 4 is given by

dX
dt

= µ0

[
1 −

Xt

Xmax

]
Xt (4)

The logistic equation utilized to describe the kinetics of
several polysaccharides fermentation systems. A modified
form of logistic equation is used to describe the cell growth
kinetics by introducing an index of the inhibitory effect r
which accounts for the deviation of growth from the expo-
nential relationship [20, 21], as Equation 5

dX
dt

= µ0

[
1 −

(
Xt

Xmax

)r]
Xt ;for r > 0 (5)

when r = 0 will be a complete inhibition of cell growth;
r = 1 Equation 5 reduces to logistic model Equation 4; r
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ranges between 0 and 1 Equation 5 describes a higher de-
gree of inhibition compared to logistic growth; r > 1 the
growth lies between exponential and logistic patterns. Equa-
tion 5 was rearranged and integrated by using partial fraction
method with the initial conditions, gives Equation 6

Xt =
Xr

maxeµ0rt

1 − Xr
0

Xr
max(1−eµ0rt)

(6)

The model parameter values were evaluated using MAT-
LAB software version 7.0.1 program and are shown in Ta-
ble 5. A better prediction of cellmass concentrations was
obtained using the modified logistic model and it was most
suited for ethanol production with the minimum average er-
ror of 4.56%.

Table 5: ANOVA for the fitted quadratic polynomial model for ethanol pro-
duction

Model Models
parameters Monod Modified Modified Logistic Modified Logistic

Logistic incorporated incorporated Modifed
Leudeking Piret Leudeking Piret

1µ0 0.11 0.11 - -
2µm 0.2 - - -
3Ks 0.54 - - -
4r - 0.59 0.56 0.76
5α - - 0.424 0.502
6β - - 0.024 0.021
7γ - - 7.885 8.315
8η - - 0.063 0.012
Avg. 4.95 3.13 6.88 7.11
error (%)
R2 0.976 0.981 0.985 0.988
1Initial specific growth (h−1)
2Maximum specific growth rate (h−1)
3Substrate affinity constant (g/l)
4Inhibitory effect index
5Non-growth associated constant for substrate
6Substrate consumption constant (g substrate / g biomass h)
7Growth associated constant (g product / g biomass)
8Non-growth associated constant (g product / g biomass h)

3.2.2. Modified Logistic incorporated Leudeking - Piret
model (product formation)

Modified Logistic incorporated Leudeking - Piret
model was developed by rearranging and integrating
the Leudeking-Piret model with two initial conditions,
X = X0(t = 0) and P = P0(t = 0) gives Equation 7

Pt = P0 + α


 Xr

0eµ0rt

1 − Xr
0

Xr
max

(1 − eµ0rt)


1/r

− Xr
0


+
βXr

max

µ0
ln

[
1 −

Xr
0

Xr
max

(
1 − eµ0rt

)] (7)

where, α is non-growth associated constant for substrate and
β is substrate consumption constant (g substrate / g biomass
h). The model parameter values were evaluated using MAT-
LAB program and are presented in Table 5. The simulation
result of the Modified Logistic incorporated Leudeking-Piret
model is in good agreement with the experimental data ob-
tained from the pretreated sugarcane bagasse and the mini-
mum average error of 5.69%.

3.2.3. Modified Logistic incorporated Modified Leudeking-
Piret model (substrate utilization)

The substrate utilization kinetics is the modified form of
the Leudeking - Piret model which can be used for substrate
utilization kinetics. Substrate consumption depends on the
magnitude of three sink terms, the instantaneous cellmass
growth rate, the instantaneous product formation rate and a
cellmass maintenance function. The Modified Logistic in-
corporated Modified Leudeking-Piret model was developed
by rearranging and integrating the Modified Leudeking-Piret
model with two initial conditions, X = X0(t = 0) and
S = S 0(t = 0) gives Equation 8

S t = S 0 − γ


 Xr

0eµ0rt

1 − X0

Xr
max(1−eµ0rt)


1/r

−
ηXr

max

µ0
ln

[
1 −

X0

Xr
max

(
1 − eµ0rt

)] (8)

where, γ is the growth associated constant (g product / g
biomass) and η is the non-growth associated constant (g
product / g biomass h). The model parameter values shown
in Table 5 are then used to simulate the experimental data of
substrate concentration at any time during the entire course
of fermentation. Better substrate utilization kinetics is ob-
tained using the Modified Logistic incorporated Modified
Leudeking-Piret model (Equation 8) and is well suited for
ethanol production from pretreated sugarcane bagasse with a
minimum average error of 6.82%.

4. Conclusion

Based on the present study, it is evident that the use of
statistical optimization tools, response surface methodology
(RSM), has helped to locate the optimum levels of the most
significant parameters for ethanol production, with minimum
effort and time. Maximum ethanol concentration (4.80 g/l)
was obtained from 50 g/l of pretreated sugarcane bagasse at
the optimized conditions (incubation temperature 35◦C, ini-
tial pH 5.5 and fermentation time 114 h) by using yeast strain
S.cerevisiae. Modified logistic model, Modified Logistic in-
corporated Leudeking-Piret model and Modified Logistic in-
corporated Modified Leudeking-Piret model were attempted
for representing the batch growth kinetics, product forma-
tion kinetics and substrate utilization kinetics respectively.
The results of the process simulation from the various mod-
els using the experimental data were compared and found to
predict more accurately during the entire course of fermen-
tation.
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