STIMULATION OF PHOTOSYNTHETIC CHARACTERISTICS OF GINKGO BILOBA L. DURING LEAF GROWTH

XIAN-SONG YANG* AND GUO-XIANG CHEN

Department of Biology and Food-Engineering, Bengbu College, Bengbu 233030, P.R. China

Key words: Stimulation, Ginkgo biloba, Photosynthetic characteristics, Leaf growth

Abstract

Photosynthetic pigments, biochemical activities and chlorophyll a fluorescence kinetics were investigated to survey the photosynthetic characteristics of Ginkgo biloba L. during leaf growth. The content of total chlorophyll increased rapidly while the content of carotenoids changed a little. The content of ATP, the activity of O2 evolution of chloroplasts, the electron transport activities, the activity of photophosphorylation and the activities of Ca2+ - and Mg2+ - ATPase were strengthened. All leaves at various growing stages exhibited typical chlorophyll a fluorescence transient, the intensity of fluorescence in the chlorophyll a fluorescence transient (OJIP) increased during leaf growth. Photosynthetic abilities gradually increased as the leaves grew.

Introduction

Leaf growth is a genetically controlled process (Sugiyama 2005). Morphological, anatomical and physiological traits significantly vary during leaf growth (Marchi et al. 2008). The development of the photosynthetic apparatus has been widely studied in both higher plants and algae. The formation of chloroplast ultrastructure, chlorophyll accumulation and the synthesis of the major components of the photosynthetic apparatus proceed almost in parallel and often result in a proportional increase of net photosynthesis (Šesták 1985).

Ginkgo biloba L., also known as maidenhair tree, is a well-known living gymnosperm fossil with edible seeds, medicinal efficacy, and ornamental value, and is the only representative of the Ginkgoaceae family. Such unique characteristics of Ginkgo have attracted worldwide interest in plant science research. The genomics (Mohanta 2012) and the physiology (Skribanek et al. 2008) of Ginkgo have been thoroughly investigated. Earlier research showed that photo-protection was significantly strengthened at the early stages of leaf expansion in Ginkgo under natural environmental conditions and photosynthetic decline in Ginkgo leaves during natural senescence (Yang et al. 2012, 2013). However, there have been no studies focusing on the analysis of leaf photosynthetic and physiological traits of Ginkgo during leaf growth.

The changes in photosynthetic pigments, biochemical activities and chlorophyll a fluorescence kinetics were investigated to survey the photosynthetic characteristics of Ginkgo during leaf growth.

Materials and Methods

Ten-year-old male Ginkgo biloba cv. ‘Dafozhi’ plants were grown in field situated in Jiangdu, Jiangsu Province, P.R. China (32°26′N, 119°38′E).

Leaf samples were collected at 08:00 a.m., immediately frozen in liquid nitrogen, and stored at −80°C until analysis. The fresh leaves were washed with distilled water and the petioles removed. The samples were extracted in ice-cold 80% acetone, and the extract was centrifuged at 6000 × g for 10 min. After collecting the top solution, the precipitate was supplemented with ice-cold 80% acetone, and centrifuged again for another 10 min. The supernatant was measured with

*Author for correspondence. <yangxs2002@sina.com>. 1College of Life Science, Nanjing Normal University, Nanjing 210023, P.R. China. <gxchen@njnu.edu.cn>.
a UV-754 spectrophotometer (Jinpeng Analytical Instruments Co., Ltd., Shanghai, China) at 470, 645 and 663 nm. Chlorophyll contents were calculated as chlorophyll $a = 12.72 \times A_{663} - 2.59 \times A_{645}$, chlorophyll $b = 22.88 \times A_{645} - 4.67 \times A_{663}$, chlorophyll $a + b = 20.29 \times A_{645} + 8.05 \times A_{663}$ and total carotenoids according to Lichtenthaler (1987).

Isolation of chloroplasts was performed according to the method of Chen et al. (2004) with slight modifications. Photophosphorylation activity was measured with a luminescent photometer (FG-300, Shanghai Institute of Plant Physiology, Shanghai, China), as described by Yang et al. (2010). The activities of Ca$^{2+}$- and Mg$^{2+}$-ATPase was measured according to Vallejos et al. (1983). An oxygen electrode (Hansatech Instruments, UK) attached with a logger was used to measure the activity of photosynthetic oxygen evolution according to Yang et al. (2010). The ATP content was measured by the bioluminescence method described by Zhu et al. (2001). Thylakoid membranes were isolated as described by Zhang et al. (2007), with some modifications. The electron transport activities of PS I, PS II, and the whole photosynthetic chain were measured polarographically using a Clark-type liquid-phase electrode (Chlorolab-2 Hansatech, Cambridge, UK).

In vivo chlorophyll fluorescence was measured using a Handy-PEA chlorophyll fluorometer (Handy-Plant Efficiency Analyser, Hansatech Instruments Ltd., King’s Lynn, Norfolk, UK). The transient was induced by red light of about 3000 µmol/m²/s provided by an array of three light-emitting diodes (peak 650 nm), which focused on the leaf surface to give homogenous illumination over the exposed area of the leaf according to Strasser et al. (1995, 2004).

Results and Discussion

Chlorophyll, as a light-harvesting molecule, is a prime component of the photosynthetic system. It is continuously synthesized and degraded as the leaves grow (Thomas 1997). The content of chlorophyll a and b per leaf fresh weight increased significantly while total carotenoids had no significant changes with the progress of leaf growth. Chlorophyll content increased at a faster rate than that of chlorophyll a and b and the content of chlorophyll a is higher than that of chlorophyll b (Fig. 1). These results are consistent with the reports in other plants (Jiang et al. 2005, Gratani and Bonito 2009). The content of ATP, the activity of photosynthetic O$_2$ evolution,

![Fig. 1. Changes in the contents of photosynthetic pigments of Ginkgo during leaf growth (♦, chl a; ■, chl b; ▲, chl a+b; ●, carotenoids). Values are means ± S.E. (n = 4).](image-url)
Fig. 2. Changes in (A) the activities of photophosphorylation, (B) Ca$^{2+}$-ATPase, (C) photosynthetic oxygen evolution and (D) ATP content of *Ginkgo* during leaf growth. Values are means ± S.E. (n = 4).

Fig. 3. Changes in (A) the electron transport activities of PS II, (B) PS I and (C) whole photosynthetic chain of *Ginkgo* during leaf growth. Values are means ± S.E. (n = 4).
photophosphorylation, Ca\(^{2+}\)- and Mg\(^{2+}\)-ATPase (Fig. 2) and the electron transport activities (Fig. 3) increased as the leaf grew. In the present research, the increase of chlorophyll content (including chlorophyll \(a\) and \(b\)) with the process of leaf growth indicated a gradual development of photosynthetic apparatus, which was supported by increases in photochemical functions of chloroplast such as activities of photophosphorylation (Fig. 2A), Ca\(^{2+}\)- and Mg\(^{2+}\)-ATPase (Fig. 2B), photosynthetic O\(_2\) evolution (Fig. 2C), and the electron transport (Fig. 3).

Fig. 4. Changes in shape of chlorophyll \(a\) fluorescence transient in \textit{Ginkgo} during leaf growth (♦, April 18th; ■, May 6th; ▲, May 20th; ×, June 5th). (A) plotted on a logarithmic time scale; (B) plotted on a linear time scale. Each transient curve is the average of 10 independent measurements.

Chlorophyll \(a\) fluorescence induction kinetics is a good indicator for the functioning of photosynthesis in intact leaves. Thus, photosynthetic capacity of leaves at various expanding stages was examined by chlorophyll \(a\) fluorescence transient. Fig. 4 shows the fluorescence induction curves plotted on logarithmic and linear time scales measured at 3000 \(\mu\)mol/m\(^2\)/s. In this study, all leaves at various growth stages exhibited typical chlorophyll \(a\) fluorescence transient. The intensity of fluorescence in the OJIP transient increased during leaf growth, which implied a gradual maturity of photosynthetic apparatus.

In summary, the present study showed that photosynthetic abilities in \textit{Ginkgo} gradually increased as the leaves grew.

Acknowledgement
This work was supported by Anhui Provincial Natural Science Foundation (11040606M79).

References

(Manuscript received on 17 February, 2013; revised on 17 February, 2014)