Article

Sympathetic Nerve Function Status in Obesity

Shahin Akhter¹, Noorzahan Begum², Sultana Ferdousi³, Shelina Begum⁴, Taskina Ali⁵

Abstract

Background: Obesity is an important and independent risk factor for cardiovascular morbidity and mortality. High incidence of cardiac autonomic nerve dysfunction has been noted in obese subjects who are at increased risk for sudden death. Objective: To study the relationship between sympathetic nerve function and obesity. Methods: This cross sectional study was conducted in the Department of Physiology, Bangabandhu Sheikh Mujib Medical University between July 2006 to June 2007 and 40 apparently healthy obese subjects aged 18-40 years of both sexes with BMI ≥ 25 kg/m² in study group. Age and sex matched 40 apparently healthy nonobese subjects with BMI range of 18.5-22.9 kg/m² were also included for comparison (Control). Two noninvasive cardiovascular reflex tests like blood pressure response to sustained handgrip and blood pressure response to standing were done to assess sympathetic nerve function status. Unpaired Student’s ‘t’ test and Pearson correlation coefficient test were used for statistical analysis. Results: Mean values of resting heart rate, resting systolic and diastolic blood pressure were significantly (p<0.05) higher and both the sympathetic nerve function parameters (BP response to hand grip and BP response to standing) were significantly (p>0.05) lower in obese compared to those of non obese control subjects. Again, BP response to hand grip were negatively and BP response to standing were positively correlated with BMI in all subjects. These correlations are statistically significant (p<0.05). Conclusion: The results of this study revealed that sympathetic nerve function may be reduced in obesity.

Key words: sympathetic nerve function, obesity, BMI

Introduction

Obesity is one of the nutritional disease which is increasing at an alarming rate in underdeveloped countries. Obesity leads to serious health consequences. It is a major risk factor for chronic diseases such as cardiovascular disease, diabetes, musculo-skeletal disorder especially osteoarthritis and some cancers like endometrial, breast and colon. Obesity is characterized by an excessive deposition and storage of fat in the body. Body mass index (BMI) is the marker for body fat content.

WHO has set standards for overweight and obesity by BMI ≥ 25 kg/m² & ≥ 30 kg/m² respectively. But, the BMI cut off point for overweight ≥ 23 kg/m² and obese ≥ 25 kg/m² for Asians are lower than the WHO criteria. Homeostatic mechanisms maintain body weight within a narrow range. Fat deposition results from discrepancy between energy consumption and expenditure. Autonomic nervous system dysfunction has been associated with obesity in humans and animals. Disturbed sympathetic nerve function may be of importance in obesity;
sympathetic underactivity could contribute to
deficient thermogenesis, positive energy balance
and weight gain, while in contrast, sympathetic
overactivity would predispose to the
development of obesity related hypertension\(^8\). The
relationship between decreased sympathetic
activity and obesity has been observed in most
animal studies\(^9\)-\(^10\). Studies on autonomic
nervous system in human obese persons have
reported controversial findings; hypoactivity of
parasympathetic and hyperactivity of sympathetic nerve function\(^11\), both lowered
sympathetic and parasympathetic nerve activity\(^12\)-\(^13\), increased parasympathetic nerve
activity with a decreased sympathetic nerve activity\(^14\).

Obesity related health problems including
various cardiovascular and metabolic diseases
are not uncommon in our community. In addition
to recognized complications of obesity, the
probable association of autonomic nerve
dysfunction with certain cardiovascular
disorders may also exist in obese persons. The
outcome of this study may focus the need for
management of obesity by various procedures
including motivation for weight reduction.

To the best of our knowledge no such study on
sympathetic nerve function status in obese
people has been done in Bangladesh. Therefore,
this study was carried out to observe the
sympathetic nerve function status in obese
subjects by 2 non invasive cardiovascular reflex
tests and also to study the relationship between
obesity and sympathetic nerve function.

Methods
This observational study was conducted in the
Department of Physiology of Bangabandhu
Sheikh Mujib Medical University, Dhaka,
Bangladesh. For this, 80 apparently healthy
subjects of both sexes in equal number with age
range from 18-40 years were selected from the
different areas of Dhaka city. The subjects with
age >40 years, overweight (BMI 23 - 24.9 kg/m\(^2\)),
diabetes mellitus, chronic renal failure, any
obvious cardiovascular diseases, chronic
obstructive lung diseases, previous history of
head injury and smokers were excluded from this
study.

The subjects were divided into two groups by
their body mass index. Group A was consisted of
40 nonobese subjects with BMI between 18.50 -
22.90 kg/m\(^2\) and Group B was consisted of obese
subjects with BMI \geq 25 kg/m\(^2\).

The purpose and procedure of the study were
explained to each subject. Written informed
consent was obtained from each subject. Study
protocol was approved by ethical committee of
the Department of Physiology BSMMU.

Detailed medical and family history was recorded
in a preformed questionnaire. Height and weight
of the subjects were recorded and BMI was
calculated. Random blood samples were collected
to determine blood glucose and serum creatinine
to exclude diabetes mellitus and chronic renal
failure. Blood glucose and serum creatinine level
were measured by auto analyzer in the
hematology laboratory of the department of
Physiology. Then the sympathetic nerve function
was assessed by two non invasive cardiovascular
reflex tests using sphygmomanometer and an
inflated calf.

Each of the subjects was briefed about the detail
of the procedure and encouraged to obtain
maximum efficient performance. 2 non invasive
cardiovascular reflex tests; BP response to
sustained hand grip (Isometric exercise test) and
BP response to standing (Orthostatic test) were
conducted in the neurophysiology laboratory of
the department of Physiolog BSMMU between
9.00am and 2.30pm in a comfortable environment.
The subjects were allowed to take rest and relax
for at least 10 minutes upon arrival. In all subjects,
blood pressure response to sustained handgrip
and to standing were performed by using
sphygmomanometer. Before the tests, all the
subjects rested in supine position for a minimum
of 10 minutes. Resting heart rate and resting systolic and diastolic pressure of all subjects were recorded.

Blood pressure response to sustained handgrip test (rise in DBP):
The subjects were asked to sit quietly and their blood pressure was measured. Then they were asked to grip the inflated cuff of a sphygmomanometer at 30% of the maximum voluntary contraction for maximum 5 minutes and then again blood pressure was measured. The difference of diastolic blood pressure between the resting and just before the release of handgrip was calculated. Rise of diastolic blood pressure (DBP) 16 or greater would be regarded as normal, 11-15 as borderline and 10 or below as abnormal.15

Blood pressure response to standing (fall in SBP):
The subjects were asked to lie on bed. After 10 minutes rest, their blood pressure was measured by the sphygmomanometer. Then they were asked to stand up as quickly as possible with pressure cuff tied around the arm. Again their blood pressure was measured. The differences in systolic blood pressure between lying and 1 minute after standing was calculated. Fall of SBP 10 or below was taken as normal, 11-19 as borderline and 30 or more as abnormal.15

Analysis of the data was done by using computerized SPSS program version-12. All the data were expressed as mean ± SD (Standard deviation). For statistical analysis unpaired Student’s ‘t’ test and Pearson’s correlation-coefficient test was used as applicable. P value <0.05 was accepted as significant.

Results
Both groups are matched for age, sex and height. But the mean BMI were significantly higher (p<0.001) in obese subjects compared to those of nonobese control subjects. (Figure 1)
In blood pressure response to sustained hand grip the mean rise in diastolic blood pressure (DBP) was significantly lower \((p<0.05)\) in group B than those of group A.

Table II: BP response to sustained handgrip in different groups \((n=80)\)

<table>
<thead>
<tr>
<th></th>
<th>Group A (n=40)</th>
<th>Group B (n=40)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBP (mm of Hg)</td>
<td>Before handgrip 70.12±6.93</td>
<td>70.75±5.96</td>
</tr>
<tr>
<td></td>
<td>After handgrip 90.77±8.44</td>
<td>92.35±5.87</td>
</tr>
<tr>
<td></td>
<td>Increase after handgrip 20.7±3.58</td>
<td>18.60±3.17*</td>
</tr>
</tbody>
</table>

Data expressed as mean± SD

Group A : Nonobese

Group B : Obese

\(n = \) total number of subjects.

\(* = \) significant at \(<0.05\) level.

Again in blood pressure response to standing, mean value of fall in systolic blood pressure (SBP) was significantly higher \((p<0.05)\) in group B than those of group A.

Table III: BP response to standing in different groups \((n=80)\)

<table>
<thead>
<tr>
<th></th>
<th>Group A (n=40)</th>
<th>Group B (n=40)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SBP (mm of Hg)</td>
<td>Lying 113.13±7.56</td>
<td>118.12±6.27</td>
</tr>
<tr>
<td></td>
<td>After standing 109.3±7.15</td>
<td>112.52±1.41</td>
</tr>
<tr>
<td></td>
<td>Fall after standing from lying 4.32±2.05</td>
<td>5.65±2.25*</td>
</tr>
</tbody>
</table>

Group A : Nonobese

Group B : Obese

\(* = \) significant at \(<0.05\) level.

Again in correlation test, the rise of DBP in hand grip test showed negative and fall in SBP in standing showed positive correlation with BMI in both groups and these relationships were statistically significant \((p<0.05)\) (Figure 2 & 3).

Figure 2: Relationship between BMI and sustained handgrip (rise of DBP) in both groups.

Figure 3: Relationship between BMI and fall of systolic blood pressure after standing from lying in both groups \((n=80)\)
Discussion
In the present study, resting heart rate, resting systolic and diastolic blood pressures were significantly higher in obese than those in non obese subjects but these values were within normal Physiological limit. Similar observations were also made by some other investigators.

Again, the observed lower blood pressure response to handgrip and standing indicated lower sympathetic nerve activity in obese person compared to non obese. These findings are consistent with those made by some investigators on human studies and also on obese animal models.

Again, significant negative correlation of rise of DBP and significant positive correlation of fall of SBP with BMI also showed association of lower sympathetic nerve function with obesity.

In the present study, the lower response of BP in handgrip and standing is suggestive of reduced sympathetic nerve function in obesity which is further supported by their significant negative and positive correlation respectively with BMI. There is evidence that impairment of sympathetic nerve activity might occur in obese persons which could explain partly the strong relationships among obesity, dangerous arrhythmia and sudden death. Peterson et al. observed that sympathetic nerve activity was decreased with increasing percentage of body fat. In contrast, some group of investigators noted that obesity in human being is associated with marked sympathetic nerve overactivation. Some investigators expressed their view regarding increase in resting heart rate and blood pressure in obese person which might result from a higher sympathetic tone induced by hyperinsulinaemia and higher level of catecholamine.

Reduced sympathetic nervous activity has been highlighted as a potential mechanism predisposing to body weight gain in human. It has been suggested that decreased sympathetic activity may be the primary reason for excessive energy storage. However, the exact mechanisms involved for the impairment of sympathetic nerve function in obese subjects of the present study cannot be elucidated from this type of study. According to the suggestions made by different investigators decreased sympathetic activity may be due to the defect in sympathetic nerve activation or in peripheral adrenoreceptors. Again the higher resting heart rate and systolic and diastolic blood pressure in obese subjects may be due to hyperinsulinemia and higher catecholamine level. However, it was not possible to comment on all these factors as none of these were studied in this work. In obese persons serious health problems may be seen if current ANS stress increases. This may not be compensated.

Conclusion
From the result of this study, it can be concluded that sympathetic nerve function may be reduced in obesity.

Author affiliation:
1. *Shahin Akhter, Lecturer, Department of Physiology, Chittagong Medical College, Chittagong. Email: Shahinakhterakhter@yahoo.com
2. Noorzahan Begum, Professor Department of Physiology, Bangabandhu Sheikh Mujib Medical University (BSMMU), Bangladesh, Email: noorzahanbeg@yahoo.com
3. Sultana Ferdousi, Assistant professor, Department of Physiology, Bangabandhu Sheikh Mujib Medical University (BSMMU), Bangladesh, Email: sferdousirata@gmail.com
4. Shelina Begum, Professor, Chairman, Department of Physiology, Bangabandhu Sheikh Mujib Medical University (BSMMU), Bangladesh.
5. Taskina Ali, Assistant Professor, Department of Physiology, Bangabandhu Sheikh Mujib Medical University (BSMMU), Bangladesh, Email: taskinadr@gmail.com

References

